У нас вы можете посмотреть бесплатно 🍳 DTSP S54: The Chef’s Pantry – Extracting Data (SQL, APIs, Files) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
"Before you can cook, you need ingredients." In this session, Lead Tutor Sam breaks down Skill 54 (S54) for the Data Analyst pathway: Extracting data from a range of sources. If you are an apprentice on the ST0119 standard, this is your guide to the first step of the ETL process. We move beyond theory to look at the three specific technical methods you need to master: SQL for databases, Scripts for APIs, and Pandas for Files. IN THIS VIDEO: The Chef Analogy: Why extraction is like sourcing ingredients. The 3 Main Sources: Databases, Web Services, and Open Data. The Toolkit: When to use SQL, Python, and JSON. The Practical Plan: A practical example of joining sales data with weather data. Ethical Extraction: How to be a good "Data Citizen." Portfolio Guide: Writing up S54 using the STARR method. ADDITIONAL DETAILS: Your problem, solved! Find the exact answers you need below: Slide 4: How do I get data from a company database? Slide 5: What is an API and how do I use it? Slide 7: How do I plan a complex data extraction project? Slide 9: How do I prove S54 in my portfolio? ➡️ Download the full presentation slides and transcript from our EPA Hub: www.mentorinai.com/epahub/ Timestamps: 00:00 Introduction - Sourcing Your Ingredients 01:10 Deconstructing S54 - The "E" in ETL 02:20 The 'Why' - Playing to Your Strengths 03:30 Source 1 - Databases (The Warehouse) 04:45 Source 2 - Web Services/APIs (The Waiter) 06:00 Source 3 - Open Data & Files (The Library) 07:15 S54 in Action - The Data Sourcing Plan 08:30 Professionalism - Ethical Extraction 09:20 Portfolio Evidence - The STARR Method 10:15 Major Project Application & Conclusion EPA Checklist: What: Did I identify the correct source (DB, API, File)? How: Did I use the correct tool (SQL, Script, Import) to extract it? Why: Did I validate the data to ensure it is complete and accurate? Affiliate Links: Enhance your Data Extraction skills with these recommended courses: Coursera: Google Data Analytics Professional Certificate Pluralsight: SQL Fundamentals / Python for Data Science (We may earn a commission if you sign up through these links). Join our newsletter for weekly tips: www.mentorinai.com Need help? Book a Mock Interview or Portfolio Review today!