У нас вы можете посмотреть бесплатно Predicting Botnet Attack and Severity in Fog Computing Networks using DL with Reinforced Feature или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Botnet attacks are one of the biggest threats to IoT and Fog Computing environments because they spread fast, overload resources, and disrupt services. In this video, we present “Predicting Botnet Attack and Severity in Fog Computing Networks using Deep Learning with Reinforced Feature Optimization”, focusing on how advanced AI can detect attacks early and estimate their severity for quicker response. Publisher: Jack Sparrow Publishers Journal : International Journal of Research and Development in Engineering Sciences (IJRDES) , www.ijrdes.com , e-ISSN: 2582-4201 Paper Title:Predicting Botnet Attack and Severity in Fog Computing Networks using Deep Learning with Reinforced Feature Optimization Paper Link : https://ijrdes.com/public/paper-view/... DOI : https://doi.org/10.63328/IJRDES-V7RI6P1 🔍 What you’ll learn in this video ✅ What is Fog Computing and why security is challenging at the edge ✅ What are Botnets and how they impact IoT/Fog networks ✅ Problem statement: real-time detection + severity prediction (low/medium/high) ✅ End-to-end framework overview: 🔹Data collection from fog/edge nodes (traffic, flow stats, device behavior) Preprocessing (normalization, imbalance handling) 🔹Reinforced Feature Optimization (RL-based selection/weighting of best features) 🔹Deep learning model for prediction (CNN/LSTM/GRU/DNN—based on implementation) 🔹Severity scoring and alert generation ✅ Why feature optimization improves accuracy and reduces false alarms ✅ Evaluation metrics: Accuracy, Precision, Recall, F1-score, ROC-AUC, confusion matrix ✅ Practical benefits: faster detection, efficient resource usage, better SOC decisions ⭐ Key Highlights 🔹 Detects botnet activity in fog/edge networks with low latency 🔹 Reinforcement learning helps choose most important features dynamically 🔹 Predicts attack severity, enabling prioritized response and mitigation 🎯 Who should watch? Cybersecurity learners, IoT/Fog researchers, network engineers, and students working on AI-based intrusion detection. 📌 Disclaimer This video is for educational and research discussion purposes only. No hacking instructions are provided. Examples are simplified for learning. 👍 Like | Share | Comment | 🔔 Subscribe for more cybersecurity + AI research videos! #Botnet #FogComputing #DeepLearning #CyberSecurity #IoTSecurity #IntrusionDetection #ReinforcementLearning #FeatureSelection #NetworkSecurity #AI #Research