У нас вы можете посмотреть бесплатно Computer Vision Meetup: Leveraging Attention for Improved Accuracy and Robustness или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In recent years, the naturally interpretable attention mechanism has become one of the most common building blocks of neural networks, allowing us to produce explanations intuitively and easily. However, the applications of such explanations beyond the scope of accountability and interpretability remain limited. In this talk, Hila will present her latest research on leveraging attention to significantly improve the accuracy and robustness of state-of-the-art large neural networks with limited resources. This is achieved by directly manipulating the attention maps based on intuitive objectives and can be applied to a variety of tasks ranging from object classification to image generation. Hila Chefer is a PhD student and lecturer at Tel-Aviv University, and an intern at Google research. Her research focuses on constructing faithful explainable AI algorithms, and leveraging explanations to promote model accuracy and robustness. Join the Computer Vision Meetup friendliest to your timezone: https://www.meetup.com/pro/computer-v... Recorded on April 27, 2023 at the virtual Computer Vision Meetup. #computervision #machinelearning #datascience #ai