У нас вы можете посмотреть бесплатно Feature Scaling and Normalization in Machine Learning | Chapter 6 Sklearn Tutorial или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Welcome to Chapter 6 of our Machine Learning tutorial series using Scikit-Learn. In this video, we cover **feature scaling and normalization**, essential steps to ensure that machine learning models perform optimally. Scaling and normalization adjust the range of feature values so that algorithms can learn efficiently without being biased by differences in magnitude. Topics covered in this chapter include: 1. Understanding Feature Scaling and Normalization Learn why different features with varying scales can negatively impact machine learning models. Understand the difference between *scaling* and *normalization* and when to use each technique. 2. StandardScaler Introduction to *StandardScaler* for standardizing features to have a mean of 0 and a standard deviation of 1. Step-by-step examples showing how to apply StandardScaler on numerical data. 3. MinMaxScaler Learn how *MinMaxScaler* transforms features to a fixed range, usually between 0 and 1. Practical examples showing when MinMaxScaler is preferable over StandardScaler. 4. RobustScaler Introduction to **RobustScaler**, which is less sensitive to outliers. Learn how RobustScaler uses the median and interquartile range to scale features. 5. Practical Examples Explore examples applying all three scalers on real datasets. Compare the effects of each scaling method on model training and predictions. 6. Best Practices Tips for choosing the right scaling method depending on your dataset and algorithm. Understand the importance of scaling for distance-based algorithms like KNN, SVM, and gradient descent optimization. By the end of this chapter, you will have a clear understanding of how to *scale and normalize features* in Python using Scikit-Learn. Proper feature scaling ensures your machine learning models are accurate, efficient, and robust. Useful Links: GitHub: https://github.com/Ezee-Kits/ YouTube: / @ezee_kits Email: ezeekits@gmail.com #Python #MachineLearning #ScikitLearn #DataScience #PythonTutorial #LearnPython #FeatureScaling #Normalization #StandardScaler #MinMaxScaler #RobustScaler #MLForBeginners #PythonProgramming #AI #DataAnalysis #DataVisualization #MLTutorial #PythonProjects #SoftwareDevelopment #Tech #PredictiveModeling