У нас вы можете посмотреть бесплатно Battery Cell Selection Using AboutEnergy’s Cell Database with TAITherm Webinar или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Selecting the right battery cell is one of the most important steps in designing high-performance electric vehicle (EV) battery packs. With hundreds of commercially available cells on the market, engineers need reliable data and accurate modeling tools to evaluate cell performance, thermal behavior, and system-level impacts. In this webinar, we demonstrate how to combine About:Energy’s industry-leading battery cell database with a TAITherm thermal/electric battery model to efficiently identify the optimal cell for vehicle traction and EV applications. You’ll learn how high-fidelity models and detailed cell data can accelerate pack development and improve performance predictions. Topics we’ll cover include: • Accessing a comprehensive database of 400+ commercially available battery cells, including detailed physics-based models for selected chemistries • Understanding the range of available battery models—ECMs, split-ECMs, single-particle (SPM) electrochemical models, DFN (Doyle–Fuller–Newman) electrochemical models, and associated thermal properties • Downloading cell models in your simulation platform of choice, such as TAITherm or Simulink • Building and analyzing a 3D thermal/electric battery pack model to evaluate cell-level and pack-level temperature gradients • Using thermal/electric modeling to estimate usable capacity, energy density, power density, pack mass, and projected pack cost Join us to learn how integrated battery modeling and validated cell data can streamline EV battery design, improve thermal management strategies, and support more accurate pack-level performance predictions.