У нас вы можете посмотреть бесплатно Understanding Bundles, Arrays & Collections in Make.com или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
👉 Get all of our blueprints, courses, and resources here: https://www.theaiautomators.com/?utm_... Chapters: 0:00 - Overview 0:14 - Bundles Explained 1:25 - Individual Data Items, Collections, and Arrays 2:41 - Understanding Arrays in Detail 4:19 - Collections vs. Arrays vs. Bundles 4:36 - Iterators and Aggregators 6:19 - Array Aggregators and Functions 7:44 - Using array functions 9:24 - JSON structures In this video, I dive into the essential data structures within make.com: bundles, collections, and arrays. Understanding these concepts is crucial for building more sophisticated automation scenarios. I begin by explaining what a bundle is in the context of make.com and how it processes individual records. Then, I differentiate between individual data items, collections (groupings of fields), and arrays (ordered lists of items) using practical examples from an email parsing scenario. I further explore arrays, demonstrating how to access specific items using their index. Next, I clarify the relationship and differences between bundles, collections, and arrays, highlighting that bundles are a make.com-specific concept related to scenario execution. Then, I introduce iterators and aggregators, explaining how they handle arrays and bundles for more complex data processing, including examples of iterating through email attachments and aggregating order prices. I also show how array aggregators can combine bundles into a single array for efficient processing and demonstrate useful array functions like map and join. Finally, I touch upon the underlying JSON format that make.com uses to represent these data structures and how understanding this can be beneficial when interacting with external APIs.