У нас вы можете посмотреть бесплатно Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
ICCV17 | 175 | Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning Abhishek Das (Georgia Tech), Satwik Kottur (Carnegie Mellon University), Stefan Lee (Virginia Tech), Jose Moura (Carnegie Mellon University), Dhruv Batra (Virginia Tech) We introduce the first goal-driven training for visual question answering and dialog agents. Specifically, we pose a cooperative `image guessing' game between two agents -- Qbot and Abot -- who communicate in natural language dialog so that Qbot can select an unseen image from a lineup of images. We use deep reinforcement learning (RL) to end-to-end learn the policies of these agents -- from pixels to multi-agent multi-round dialog to game reward. We demonstrate two experimental results. First, as a `sanity check' demonstration of pure RL (from scratch), we show results on a synthetic world, where the agents communicate in ungrounded vocabulary, ie, symbols with no pre-specified meanings (X, Y, Z). We find that two bots invent their own communication protocol and start using certain symbols to ask/answer about certain visual attributes (shape/color/size). Thus, we demonstrate the emergence of grounded language and communication among `visual' dialog agents with no human supervision at all. Second, we conduct large-scale real-image experiments on the VisDial dataset, where we pretrain on dialog data and show that the RL fine-tuned agents significantly outperform supervised pretraining. Interestingly, the RL Qbot learns to ask questions that Abot is good at, ultimately resulting in more informative dialog and a better team.