У нас вы можете посмотреть бесплатно Sparse testcrossing for early-stage genomic prediction of GCA in maize hybrid breeding programs или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
CGDG seminar with David Omar Gonzalez Dieguez: Hybrid breeding exploits heterosis by crossing parents from distinct heterotic pools and typically involves two components: (1) population improvement and (2) product development. Population improvement enhances genetic gain through reciprocal recurrent selection based on general combining ability (GCA). Early stages require evaluating large numbers of candidates, a process that is resource-intensive and logistically challenging. To reduce complexity, breeders often use a single-tester strategy, but this poorly represents the heterotic pool, leading to inaccurate GCA estimates and suboptimal advancement of candidates to later stages. Sparse testcrossing addresses these limitations by using multiple testers in sparse designs and leveraging genomic relationships to connect candidate genotypes. This strategy balances design simplicity, resource efficiency, and accuracy of GCA, ultimately delivering higher rates of genetic gain.