У нас вы можете посмотреть бесплатно 数据预处理预处理器组件 基本信息 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Orange3 提供了一系列的数据预处理工具,这些工具可以帮助用户在数据分析之前准备好数据。以下是您请求的预处理组件的详细解释: Discretize Continuous Variables(离散化连续变量): 这个组件将连续变量转换为分类变量。它提供了多种方法,如等宽区间划分、等频区间划分、基于决策树的最优划分等。离散化可以帮助简化模型,使决策规则更加直观。 Continuize Discrete Variables(连续化离散变量): 与离散化相反,这个组件将分类变量转换为连续变量。这可以通过将类别编码为唯一的数值来实现,例如使用独热编码或标签编码。 Impute Missing Values(填充缺失值): 这个组件用于处理数据中的缺失值。它提供了多种填充策略,如使用平均值、中位数、众数,或者通过模型预测来估算缺失值。 Select Relevant Features(选择相关特征): 特征选择是识别数据集中最重要特征的过程。这个组件提供了多种方法,如过滤式选择(例如基于方差、相关系数)、包裹式选择(例如递归特征消除)和嵌入式选择(例如使用LASSO或随机森林的特征重要性)。 Select Random Features(选择随机特征): 这个组件随机选择一定比例的特征。这在创建模型的随机子集或进行特征选择时非常有用,可以帮助减少过拟合并提高模型的泛化能力。 Normalize Features(归一化特征): 标准化是将特征缩放到一个共同的尺度,通常是将特征值转换为平均值为0、标准差为1的正态分布。这个组件可以使用最小-最大标准化、Z分数标准化等方法。 Randomize(随机化): 这个组件随机打乱数据集中的行。这通常用于在建模之前打乱数据,以确保模型的训练不会受到数据原始顺序的影响。 Remove Sparse Features(移除稀疏特征): 稀疏特征是指在数据集中出现频率很低的特征。这个组件可以帮助移除那些可能对模型训练没有帮助的稀疏特征。 Principal Component Analysis(主成分分析): 主成分分析(PCA)是一种降维技术,它通过线性变换将原始特征转换为新的特征空间,其中新特征是原始特征的线性组合。PCA可以帮助识别数据中的主要变量,并减少特征的数量。 CUR Matrix Decomposition(CUR矩阵分解): CUR分解是一种矩阵分解方法,它将矩阵分解为三个矩阵的乘积:C(保留的列)、U(保留的行)和R(对角线上的元素)。这种方法可以用于降维和特征选择,特别是在处理大型稀疏矩阵时。 这些预处理组件在Orange3中通过图形用户界面操作,用户可以通过拖放这些组件到工作流程中来构建数据处理流程。每个组件都有相应的参数可以调整,以满足特定的数据处理需求。