У нас вы можете посмотреть бесплатно Leveraging Python Descriptors for Robust Attribute Management или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Leveraging Python Descriptors for Robust Attribute Management 💥💥 GET FULL SOURCE CODE AT THIS LINK 👇👇 👉 https://xbe.at/index.php?filename=Lev... Python descriptors are a powerful feature that allows users to dynamically intercept and modify attribute accesses. In this write-up, we will explore how to use descriptors for managing robust and dynamic attributes in Python. Descriptors enable developers to add custom behavior to attributes by implementing the `__get__()`, `__set__()`, and `__delete__()` methods. These methods intercept AttributeError exceptions raised when accessing an attribute that does not exist in a class. First, let's examine the `__get__()` method, which is responsible for handling attribute retrieval. By implementing this method, developers can perform one-time calculations, cache results, or even return a custom object. ```python class DescriptorCache: def __init__(self, func): self.func = func def __get__(self, instance, owner): if instance is None: return self.func value = self.func(instance) setattr(instance, self.__name__, value) return value ``` Next, let's explore the `__set__()` method which manages setting an attribute. This method receives the new value and the instance for the object. Custom behaviors like validation, input transformation, or complex data structures can be implemented to ensure data integrity. ```python class DescriptorCache: ... def __set__(self, instance, value): self.func(instance, value) setattr(instance, self.__name__, value) ``` Python descriptors also support deletion of attributes via the `__delete__()` method. This method is called when you attempt to delete an attribute. Use descriptors to create dynamic or complex attributes. For instance, you could create a logging descriptor that adds logging messages when an attribute is accessed, set, or deleted. You can also create a counter descriptor for tracking usage of an attribute or a memoizing descriptor to cache the result of expensive function calls. To further learn about descriptors and explore more use cases, here are some recommended resources: Recommended Resources 1. Python Documentation: Descriptors - https://docs.python.org/3/how #STEM #Programming #Technology #Tutorial #leveraging #python #descriptors #robust #attribute #management Find this and all other slideshows for free on our website: https://xbe.at/index.php?filename=Lev...