Русские видео

Сейчас в тренде

Иностранные видео




Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Python Pandas Tutorial: Analyze Data Like a Pro

Want to master data analysis in Python? In this tutorial, Udacity Senior Technical Content Developer Brian Roehm breaks down Pandas, one of the most powerful libraries for data manipulation. Whether you're working with large datasets, filtering data, or performing calculations, Pandas makes it easy and efficient. Quick Tips Before We Start Always start with import pandas as pd Use .head() to preview the first few rows of your dataset Use .info() to check for missing values and data types Use .describe() for quick statistics on numerical columns What You’ll Learn How to import Pandas and create DataFrames Selecting and filtering data Adding and removing columns Performing basic operations to analyze data Essential tips to optimize your workflow Wrap-Up & Final Tips ✔ Practice Regularly – Work on real datasets from Kaggle or other public repositories ✔ Use Pandas Documentation – The official documentation is a great resource (Pandas Docs) ✔ Combine Pandas with Visualization – Integrate Pandas with Matplotlib and Seaborn for insightful charts ✔ Optimize Performance – Use .astype() to convert data types for memory efficiency ✔ Experiment! – Modify, filter, and transform datasets to become comfortable with different Pandas functions Ready to level up your Python skills? Watch the full tutorial and start analyzing data like a pro. Take your learning further by visiting the Udacity catalog: https://www.udacity.com/school/progra... #PythonPandas #PandasTutorial #DataAnalysis #PythonForDataScience #Udacity #Python #LearnPython --- Video Chapters: What is Pandas & Why is it Essential? - 00:00 See Pandas in Action - 1:40 Continue Learning Python and Data Analysis - 6:05 --- Connect with us on social! 🌐 Instagram:   / udacity   LinkedIn:   / udacity   Facebook:   / udacity   X/Twitter:   / udacity  

Comments