У нас вы можете посмотреть бесплатно Linear Regression Explained | Full Deep Dive in ML from Scratch to GPU- Math and Model Training или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Most people use Linear Regression… without really understanding what happens inside. In this deep dive, we break Linear Regression down from first principles — no black box thinking. We start with the simple equation y = mx + b, then build everything step-by-step: • Method of Least Squares (Normal Equation) • Gradient Descent (how models actually learn) with Demo • MSE and loss functions • Train / Validation / Test split • Feature scaling • Overfitting explained • Ridge (L2), Lasso (L1), Elastic Net with Demo • Model Accuracy R², Adjusted R² and p-values • Vector form (Xθ) • From NumPy to scikit-learn • CPU vs GPU training (PyTorch demo) By the end of this video, Linear Regression will not feel like a black box anymore. This is part of the Machine Learning Deep Dive Series. Next video: Logistic Regression. #LinearRegression #MachineLearning #DeepLearning #GradientDescent #LeastSquares #DataScience #RidgeRegression #LassoRegression #ElasticNet #Python #PyTorch #scikitlearn #Statistics #ArtificialIntelligence 00:00 Introduction – Why Most People Don’t Understand Linear Regression 02:15 What Is Linear Regression? (y = mx + b) 06:07 Method of Least Squares (Closed Form Solution) 09:04 Predictions and Error Explained 13:07 Mean Squared Error (MSE) 14:36 Gradient Descent - Why 15:20 Gradient Descent 18:06 Gradient Descent Calculation by hand 20:46 Gradient Descent Colab Notebook 21:10 Features & Multi-Variable Linear Regression 30:56 Feature Scaling & Overfitting 39:35 L2 Regularisation , L1 Regularisation & Elasticnet 48:05 Vector Notation 51:01 Coding LR in numpy and demo 01:00:40 Types of Linear Regression 01:03:00 Coding all LR model in scikit-learn 01:07:48 Model Evaluation – MSE, R², Adjusted R², p-value 01:11:22 CPU vs GPU – PyTorch Demo 01:16:16 Final Recap – No More Black Box 01:19:28 What’s Next – Logistic Regression Links: Gradient Descent : https://github.com/guptnava/youtube_d... https://colab.research.google.com/dri... Multivariable Linear Regression: https://github.com/guptnava/youtube_d... https://colab.research.google.com/dri... Training using Numpy: https://github.com/guptnava/youtube_d... https://colab.research.google.com/dri... Training Models using scikit-learn: https://github.com/guptnava/youtube_d... https://colab.research.google.com/dri... Training Models on CPU and GPU comparison: https://github.com/guptnava/youtube_d... https//colab.research.google.com/drive/1xVgI70b5hpG4iPXZ9GsCuzMYWkbc3TMD?usp=sharing