• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Running Apache Kafka in Production скачать в хорошем качестве

Running Apache Kafka in Production 3 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Running Apache Kafka in Production
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Running Apache Kafka in Production в качестве 4k

У нас вы можете посмотреть бесплатно Running Apache Kafka in Production или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Running Apache Kafka in Production в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Running Apache Kafka in Production

https://cnfl.io/podcast-episode-240 | What are some recommendations to consider when running Apache Kafka® in production? Jun Rao, one of the original Kafka creators, as well as an ongoing committer and PMC member, shares the essential wisdom he's gained from developing Kafka and dealing with a large number of Kafka use cases. Here are 6 recommendations for maximizing Kafka in production: 1. Nail Down the Operational Part When setting up your cluster, in addition to dealing with the usual architectural issues, make sure to also invest time into alerting, monitoring, logging, and other operational concerns. Managing a distributed system can be tricky and you have to make sure that all of its parts are healthy together. This will give you a chance at catching cluster problems early, rather than after they have become full-blown crises. 2. Reason Properly About Serialization and Schemas Up Front At the Kafka API level, events are just bytes, which gives your application the flexibility to use various serialization mechanisms. Avro has the benefit of decoupling schemas from data serialization, whereas Protobuf is often preferable to those practiced with remote procedure calls; JSON Schema is user friendly but verbose. When you are choosing your serialization, it's a good time to reason about schemas, which should be well-thought-out contracts between your publishers and subscribers. You should know who owns a schema as well as the path for evolving that schema over time. 3. Use Kafka As a Central Nervous System Rather Than As a Single Cluster Teams typically start out with a single, independent Kafka cluster, but they could benefit, even from the outset, by thinking of Kafka more as a central nervous system that they can use to connect disparate data sources. This enables data to be shared among more applications. 4. Utilize Dead Letter Queues (DLQs) DLQs can keep service delays from blocking the processing of your messages. For example, instead of using a unique topic for each customer to which you need to send data (potentially millions of topics), you may prefer to use a shared topic, or a series of shared topics that contain all of your customers. But if you are sending to multiple customers from a shared topic and one customer's REST API is down—instead of delaying the process entirely—you can have that customer's events divert into a dead letter queue. You can then process them later from that queue. 5. Understand Compacted Topics By default in Kafka topics, data is kept by time. But there is also another type of topic, a compacted topic, which stores data by key and replaces old data with new data as it comes in. This is particularly useful for working with data that is updateable, for example, data that may be coming in through a change-data-capture log. A practical example of this would be a retailer that needs to update prices and product descriptions to send out to all of its locations. 6. Imagine New Use Cases Enabled by Kafka's Recent Evolution The biggest recent change in Kafka's history is its migration to the cloud. By using Kafka there, you can reserve your engineering talent for business logic. The unlimited storage enabled by the cloud also means that you can truly keep data forever at reasonable cost, and thus you don't have to build a separate system for your historical data needs. EPISODE LINKS ► Kafka Internals 101: https://cnfl.io/kafka-internals-101-e... ► Kris Jenkins’ Twitter:   / krisajenkins   ► Use PODCAST100 for $100 of free Cloud usage: https://cnfl.io/try-cloud-episode-240 ► Promo details: https://cnfl.io/promo-details-episode... TIMESTAMPS 0:00 - Intro 2:40 - Nail down the operational part 8:11 - Reason properly about serialization and schemas up front 17:16 - Utilize Dead Letter Queues 27:55 - Use Kafka as a central nervous system vs. a single cluster 36:56 - Understand compacted topics 46:40 - Imagine new use cases enabled by Kafka's recent evolution 57:01 - It's a wrap! ABOUT CONFLUENT Confluent is pioneering a fundamentally new category of data infrastructure focused on data in motion. Confluent’s cloud-native offering is the foundational platform for data in motion – designed to be the intelligent connective tissue enabling real-time data, from multiple sources, to constantly stream across the organization. With Confluent, organizations can meet the new business imperative of delivering rich, digital front-end customer experiences and transitioning to sophisticated, real-time, software-driven backend operations. To learn more, please visit www.confluent.io. #microservices #apachekafka #kafka #confluent

Comments
  • Build a Real Time AI Data Platform with Apache Kafka 3 года назад
    Build a Real Time AI Data Platform with Apache Kafka
    Опубликовано: 3 года назад
  • Using Kafka-Leader-Election to Improve Scalability and Performance 3 года назад
    Using Kafka-Leader-Election to Improve Scalability and Performance
    Опубликовано: 3 года назад
  • Common Apache Kafka Mistakes to Avoid 3 года назад
    Common Apache Kafka Mistakes to Avoid
    Опубликовано: 3 года назад
  • Event-Driven Architectures Done Right, Apache Kafka • Tim Berglund • Devoxx Poland 2021 3 года назад
    Event-Driven Architectures Done Right, Apache Kafka • Tim Berglund • Devoxx Poland 2021
    Опубликовано: 3 года назад
  • just use postgres - the podcast (/w Denis Magda) 2 недели назад
    just use postgres - the podcast (/w Denis Magda)
    Опубликовано: 2 недели назад
  • Kafka Tutorial for Beginners | Everything you need to get started 11 месяцев назад
    Kafka Tutorial for Beginners | Everything you need to get started
    Опубликовано: 11 месяцев назад
  • 15 Essential Do’s and Don’ts with Apache Kafka by Stephane Derosiaux 1 год назад
    15 Essential Do’s and Don’ts with Apache Kafka by Stephane Derosiaux
    Опубликовано: 1 год назад
  • Handling 2 Million Apache Kafka Messages Per Second at Honeycomb 3 года назад
    Handling 2 Million Apache Kafka Messages Per Second at Honeycomb
    Опубликовано: 3 года назад
  • Глубокое погружение в проектирование системы Kafka с бывшим инженером Meta 1 год назад
    Глубокое погружение в проектирование системы Kafka с бывшим инженером Meta
    Опубликовано: 1 год назад
  • Diving into Kafka Internals with David Jacot 2 года назад
    Diving into Kafka Internals with David Jacot
    Опубликовано: 2 года назад
  • Flink vs Kafka Streams/ksqlDB: Comparing Stream Processing Tools 3 года назад
    Flink vs Kafka Streams/ksqlDB: Comparing Stream Processing Tools
    Опубликовано: 3 года назад
  • Kafka - Exactly once semantics with Matthias J. Sax 3 года назад
    Kafka - Exactly once semantics with Matthias J. Sax
    Опубликовано: 3 года назад
  • Keynote: Welcome to the Streaming Era | Jay Kreps | Current 2022 3 года назад
    Keynote: Welcome to the Streaming Era | Jay Kreps | Current 2022
    Опубликовано: 3 года назад
  • Когда использовать Kafka или RabbitMQ | Проектирование системы 1 год назад
    Когда использовать Kafka или RabbitMQ | Проектирование системы
    Опубликовано: 1 год назад
  • Kubernetes — Простым Языком на Понятном Примере 6 месяцев назад
    Kubernetes — Простым Языком на Понятном Примере
    Опубликовано: 6 месяцев назад
  • Apache Kafka Crash Course 6 лет назад
    Apache Kafka Crash Course
    Опубликовано: 6 лет назад
  • Protobuf, JSON Schema, and Confluent Cloud ksqlDB | Livestreams 004 Трансляция закончилась 5 лет назад
    Protobuf, JSON Schema, and Confluent Cloud ksqlDB | Livestreams 004
    Опубликовано: Трансляция закончилась 5 лет назад
  • What Is Data Mesh, and How Does it Work? ft. Zhamak Dehghani 4 года назад
    What Is Data Mesh, and How Does it Work? ft. Zhamak Dehghani
    Опубликовано: 4 года назад
  • Apache Kafka Architecture 2 года назад
    Apache Kafka Architecture
    Опубликовано: 2 года назад
  • Handling Message Errors and Dead Letter Queues in Apache Kafka ft. Jason Bell 4 года назад
    Handling Message Errors and Dead Letter Queues in Apache Kafka ft. Jason Bell
    Опубликовано: 4 года назад

Контактный email для правообладателей: u2beadvert@gmail.com © 2017 - 2026

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5