У нас вы можете посмотреть бесплатно Scaling 3D Gaussian Splatting: Custom Gradients vs Autograd Under the Hood или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we break down the backward pass of 3D Gaussian Splatting (3DGS) and compare custom gradient implementations vs PyTorch Autograd — step by step, under the hood. We walk through the performance trade-offs between writing a custom CUDA backward pass and relying on automatic differentiation. 📬 Join the 3D Gaussian Splatting & 3D Vision Newsletter: https://3dgs.teachable.com/p/newslett... 🎓 Full 3D Gaussian Splatting Course: https://3dgaussiansplattingcourse.com/ ▶️ Forward Pass Implementation Explained: • 3D Gaussian Splatting | 3DGS Implementatio... You’ll learn: • When Autograd becomes a bottleneck • Memory and performance considerations for large-scale 3DGS training This video is ideal if you are: • Modifying or extending the original 3DGS implementation • Building differentiable rendering research prototypes • Optimizing large-scale 3D scene reconstruction • Integrating 3DGS with NeRF or SfM pipelines • Working on custom CUDA or PyTorch ops While the focus is on 3D Gaussian Splatting, the concepts generalize to: • Differentiable rendering systems • Custom CUDA kernels • PyTorch C++/CUDA extensions • Neural rendering optimization • 3D vision and graphics research If you're serious about pushing 3DGS beyond “plug-and-play,” mastering the backward pass is essential — and this video gives you the conceptual clarity and implementation insight to do exactly that. #3DGaussianSplatting #3DGS #DifferentiableRendering #BackwardPass #Autograd #NeRF #ComputerVision #GraphicsProgramming #3DReconstruction #CUDA #PyTorch