У нас вы можете посмотреть бесплатно Executing Deep Optimization Algorithms on a Superconducting Quantum Processor with Andreas Wallraff или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Speaker: Andreas Wallraff Host: Zlatko Minev, Ph.D. Title: Executing Deep Optimization Algorithms on a Superconducting Quantum Processor Abstract: Superconducting circuits are a prime contender both for realizing fault-tolerant quantum processors and for executing noisy intermediate-scale quantum (NISQ) algorithms. After a brief introduction, I will discuss our implementation of quantum approximate optimization algorithms (QAOA), one of a whole class of variational algorithms which are believed to be promising to solve computationally hard problems on quantum computers. Such algorithms also emerge as a benchmark for the performance of NISQ-era quantum information processing systems. Gaining computational power from QAOA critically relies on the mitigation of errors during the execution of the algorithm, which for coherence-limited operations is achievable by reducing the gate count. Here, we present an improvement of up to a factor of three in algorithmic performance, by implementing a continuous hardware-efficient gate set. This gate set allows us to perform a critical step in QAOA with a single operation on each pair of qubits instead of decomposing it into multiple gates. We experimentally investigate the circuit-depth-dependent performance of our QAOA implementations for finding solutions to exact-cover problems mapped onto three or seven qubits using up to a total of 399 operations in up to 9 layers. Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers [1]. In the same device architecture, we have recently demonstrated repeated error detection [2], an important step toward quantum error correction and the execution of fault-tolerant quantum algorithms. References [1] N. Lacroix et al., arXiv:2005.05275 (2020) [2] C. K. Andersen et al., Nat. Phys. (2020). https://doi.org/10.1038/s41567-020-09... -- The Quantum Computing Seminar Series is a deep dive into various academic and research topics within the quantum community. It will feature community members and leaders every Friday, 12 PM EDT.