У нас вы можете посмотреть бесплатно Defuzzification methods weighted average center of gravity или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Download 1M+ code from https://codegive.com/5ec8980 okay, let's dive into the world of defuzzification, focusing specifically on the weighted average method and the center of gravity (centroid) method. we'll cover the theoretical underpinnings, practical considerations, implementation in python using `scikit-fuzzy`, and provide detailed code examples. *what is defuzzification?* defuzzification is the process of converting a fuzzy set (the output of a fuzzy inference system) into a crisp (single, scalar) value. in simpler terms, it's the step where you translate a fuzzy output like "moderately high temperature" into a specific temperature like 28 degrees celsius. this crisp value is what's ultimately used to control a system or make a decision. why is this necessary? fuzzy logic excels at handling uncertainty and vagueness in inputs and rules. however, many real-world applications require a concrete, non-fuzzy control signal or decision. defuzzification bridges the gap. *common defuzzification methods* several defuzzification methods exist, each with its own strengths and weaknesses. some popular ones include: *centroid (center of gravity):* the most widely used method. calculates the center of area under the fuzzy set's membership function. *weighted average (weighted mean):* computes a weighted average based on the membership values and representative values (e.g., the center) of each fuzzy set. *mean of maxima (mom):* finds the points with the highest membership value and averages their values. *first of maxima (fom):* selects the smallest value with the highest membership value. *last of maxima (lom):* selects the largest value with the highest membership value. *bisector:* finds the value where the area to the left and right of the membership function are equal. we'll focus on the *weighted average* and *centroid* methods in detail. *1. weighted average defuzzification* *concept:* the weighted average method computes a crisp output by taking a weig ... #Defuzzification #WeightedAverage #numpy defuzzification weighted average center of gravity fuzzy logic fuzzy inference crisp output membership functions fuzzy sets centroid method fuzzy decision making aggregation methods uncertainty modeling rule-based systems fuzzy controllers decision support systems