У нас вы можете посмотреть бесплатно D'Alembert Solution to the Wave Equation или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we derive the D'Alembert Solution to the wave equation. We use the general solution found in the last couple of videos to solve a Wave PDE problem in an infinite domain with two initial conditions (initial displacement and initial velocity). The resulting solution is the D'Alembert Solution/D'Alembert Formula. We also show earlier on in the video that the Wave Equation consists of the sum of a forward travelling wave (f(x+ct)) and a backward travelling wave (g(x-ct)), because if we're at the same relative location on the wave (e.g. x+ct/x-ct is a constant), then that relative location has to have a decreasing x (backward travelling) for f(x+ct) and an increasing x (forward travelling) for g(x-ct). I hope my explanation here wasn't too confusing because I feel like that was one of the trickier parts of the video. If you have any questions, let me know! Questions/requests? Ask me in the comments! Prereqs: This playlist, especially videos 9-12: • Partial Differential Equations Lecture Notes: https://drive.google.com/file/d/0BzC4... Patreon: https://www.patreon.com/user?u=4354534 Twitter: / facultyofkhan Special thanks to my Patrons: Jennifer Helfman Jacob Soares