У нас вы можете посмотреть бесплатно Model Distillation: From Large Models to Efficient Enterprise Solutions или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Dive deep into the concept of "Model Distillation," an essential technique for building more efficient enterprise AI systems—particularly in natural language processing. Join Charlie Dickens, an applied research scientist at Snorkel AI, as well as Shane Johnson, Snorkel's senior director of product marketing, as they break down the intricacies of model distillation. Discover how model distillation can help businesses achieve fast and accurate responses while minimizing costs. The pair explores several distillation methods, including knowledge extraction and transfer, and provide real-world examples to showcase its applications. From Stanford’s innovative approach to distillation using GPT-3 to NVIDIA's cutting-edge research, learn how organizations leverage this technique to improve their AI capabilities. By the end of this video, you will have a clear understanding of how model distillation can be applied to your enterprise, including strategies for selecting the right teacher and student models, ensuring data quality, and optimizing performance. Whether you're an AI professional or a business leader looking to integrate advanced AI solutions, this video will equip you with the knowledge needed to harness the power of model distillation effectively. Timestamps: 00:00 Introduction 01:02 Overview of Distillation 02:05 Introduction to Snorkel Flow 03:30 Context for Distillation 05:53 Model Compression Techniques 07:46 Distillation for Specialized Tasks 08:20 Examples of Distillation in Practice 11:08 Knowledge Distillation Definition 12:02 Knowledge Extraction Process 13:34 Knowledge Extraction Steps 14:54 Teacher Labeling 17:24 Hidden Representations 19:11 Synthetic Data Generation 21:30 Feedback for Distillation 24:29 Summary of Knowledge Distillation 25:11 Snorkel AI Approach 30:10 Taxonomy Development and Distillation 35:06 Case Study Overview 41:12 Key Takeaways 44:02 Importance of Data Quality 46:31 Q&A Session #ai #enterpriseai #modeldistillation