У нас вы можете посмотреть бесплатно Listen Learner: Automatic Class Discovery & One-Shot Interactions for Acoustic Activity Recognition или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Acoustic activity recognition has emerged as a foundational element for imbuing devices with context-driven capabilities, enabling richer, more assistive, and more accommodating computational experiences. Traditional approaches rely either on custom models trained in situ, or general models pre-trained on preexisting data, with each approach having accuracy and user burden implications. We present Listen Learner, a technique for activity recognition that gradually learns events specific to a deployed environment while minimizing user burden. Specifically, we built an end-to-end system for self-supervised learning of events labelled through one-shot interaction. Our results show that our system can accurately and automatically learn acoustic events across environments (e.g., 97% precision, 87% recall), while adhering to users’ preferences for non-intrusive interactive behavior. Paper Citation: Wu, J., Harrison, C., Bigham, J. and Laput, G. 2020. Automated Class Discovery and One-Shot Interactions for Acoustic Activity Recognition. In Proceedings of the 38th Annual SIGCHI Conference on Human Factors in Computing Systems. CHI '20. ACM, New York, NY.