У нас вы можете посмотреть бесплатно Pure Transformers are Powerful Graph Learners | Jinwoo Kim или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Join the Learning on Graphs and Geometry Reading Group: https://hannes-stark.com/logag-readin... Paper “Pure Transformers are Powerful Graph Learners": https://arxiv.org/abs/2207.02505 Abstract: We show that standard Transformers without graph-specific modifications can lead to promising results in graph learning both in theory and practice. Given a graph, we simply treat all nodes and edges as independent tokens, augment them with token embeddings, and feed them to a Transformer. With an appropriate choice of token embeddings, we prove that this approach is theoretically at least as expressive as an invariant graph network (2-IGN) composed of equivariant linear layers, which is already more expressive than all message-passing Graph Neural Networks (GNN). When trained on a large-scale graph dataset (PCQM4Mv2), our method coined Tokenized Graph Transformer (TokenGT) achieves significantly better results compared to GNN baselines and competitive results compared to Transformer variants with sophisticated graph-specific inductive bias. Authors: Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, Seunghoon Hong Twitter Hannes: / hannesstaerk Twitter Dominique: / dom_beaini Twitter Valence Discovery: / valence_ai Reading Group Slack: https://join.slack.com/t/logag/shared... ~ Chapters 00:00 - Intro 01:15 - Key Takeaway: Tokenized Graph Transformers (TokenGT) 11:44 - Transformers for Graphs 18:07 - Method: Tokenizing a Graph 25:52 - How Does TokenGT Work? 33:05 - Theory Overview + Discussion 50:01 - Background Info: k-IGN 01:12:52 - Approximating k-IGN 01:18:16 - Experimental Results 01:30:09 - Self-Attention Distance Visualization 01:31:09 - Conclusion and Future Work 01:35:57 - Q+A