Русские видео

Сейчас в тренде

Иностранные видео


Скачать с ютуб Fluorescence-activated cell sorting (FACS) в хорошем качестве

Fluorescence-activated cell sorting (FACS) 10 лет назад


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса savevideohd.ru



Fluorescence-activated cell sorting (FACS)

Fluorescence-activated cell sorting (FACS) is a specialized type of flow cytometry. It provides a method for sorting a heterogeneous mixture of biological cells into two or more containers, one cell at a time, based upon the specific light scattering and fluorescent characteristics of each cell. It is a useful scientific instrument as it provides fast, objective and quantitative recording of fluorescent signals from individual cells as well as physical separation of cells of particular interest. The acronym FACS is trademarked and owned by Becton, Dickinson and Company.[21] Among the large majority of researchers who use this technology for sorting or analysis, this term has become generic in common usage, much like xerox or kleenex. The first cell sorter was invented by Mack Fulwyler in 1965, using the Coulter principle, a relatively difficult technique that is no longer used in modern instruments. The technique was expanded by Len Herzenberg, who was responsible for coining the term FACS.[22] Herzenberg won the Kyoto Prize in 2006 for his seminal work in flow cytometry. The cell suspension is entrained in the center of a narrow, rapidly flowing stream of liquid. The flow is arranged so that there is a large separation between cells relative to their diameter. A vibrating mechanism causes the stream of cells to break into individual droplets. The system is adjusted so that there is a low probability of more than one cell per droplet. Just before the stream breaks into droplets, the flow passes through a fluorescence measuring station where the fluorescent character of interest of each cell is measured. An electrical charging ring is placed just at the point where the stream breaks into droplets. A charge is placed on the ring based on the immediately prior fluorescence intensity measurement, and the opposite charge is trapped on the droplet as it breaks from the stream. The charged droplets then fall through an electrostatic deflection system that diverts droplets into containers based upon their charge. In some systems, the charge is applied directly to the stream, and the droplet breaking off retains charge of the same sign as the stream. The stream is then returned to neutral after the droplet breaks off.

Comments