У нас вы можете посмотреть бесплатно Compare data analytics with BigQuery and Dataproc или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Activity overview Cloud data analytics is a rapidly evolving field, and cloud data analysts must continuously learn about new platforms and technologies to be effective in their jobs. Comparing different platforms, such as BigQuery and Dataproc, is a good way to do this. BigQuery and Dataproc are both cloud data processing platforms, but they use different data processing engines, SQL dialects, and development environments to analyze data. BigQuery is a data warehouse that is good for interactive queries on large datasets. It is easy to use and can handle a wide range of data analysis tasks. Dataproc is a managed Hadoop and Spark service that is good for batch processing jobs on large datasets. It is more flexible than BigQuery, but it can be more complex to set up and use. Both BigQuery and Dataproc are integrated with other Google Cloud services, making it easy to move data between them and to discover data lake sources. In this lab, you'll join data from two CSV files into a Parquet file. Then, you'll use the combined data to compare analysis performed with BigQuery with analysis using the same data with Dataproc and Spark. #gcp #googlecloud #qwiklabs #learntoearn