У нас вы можете посмотреть бесплатно Why JVector 3 Is The Most Advanced Embedded Vector Search Engine или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
An airhacks.fm (https://airhacks.fm) conversation with Jonathan Ellis (@spyced ( / spyced ) ) about: discussion of JVector (https://github.com/jbellis/jvector) 3 features and improvements, compression techniques for vector indexes, binary quantization vs product quantization, anisotropic (https://en.wikipedia.org/wiki/Anisotropy) product quantization for improved accuracy, indexing Wikipedia example, Cassandra (https://cassandra.apache.org/_/index....) integration, SIMD (https://en.wikipedia.org/wiki/Single_...) acceleration with Fused ADC (https://github.com/jbellis/jvector) , optimization with Chronicle Map (https://github.com/OpenHFT/Chronicle-Map) , E5 embedding models (https://huggingface.co/intfloat/e5-sm...) , comparison of CPU vs GPU for vector search, implementation details and low-level optimizations in Java (https://www.java.com/en/) , use of Java Panama (https://openjdk.java.net/projects/pan...) API and foreign function interface, JVector's performance advantages, memory footprint reduction, integration with Cassandra and Astra DB (https://www.datastax.com/products/dat...) , challenges of vector search at scale, trade-offs between RAM usage and CPU performance, Eventual Consistency (https://en.wikipedia.org/wiki/Eventua...) in distributed vector search, comparison of different embedding models and their accuracy, importance of re-ranking in vector search, advantages of JVector over other vector search implementations Jonathan Ellis on twitter: @spyced ( / spyced )