У нас вы можете посмотреть бесплатно Maximizing GPU Utilization Over Multi-Cluster: Challenges and Solutions for Cloud-Native AI Platform или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Don't miss out! Join us at our next Flagship Conference: KubeCon + CloudNativeCon North America in Salt Lake City from November 12 - 15, 2024. Connect with our current graduated, incubating, and sandbox projects as the community gathers to further the education and advancement of cloud native computing. Learn more at https://kubecon.io Maximizing GPU Utilization Over Multi-Cluster: Challenges and Solutions for Cloud-Native AI Platform - William Wang & Hongcai Ren, Huawei With the increasing usage of running AI/ML workloads on Kubernetes, many companies build their cloud native AI platforms over multiple Kubernetes clusters that spread across data centers and a diverse range of GPU types. However, managing such a large-scale and heterogeneous GPU environment presents even more critical challenges, such as resource fragmentation, operational costs, and scheduling workload across different resources etc. This talk will explore how these challenges are addressed by using the Karmada and Volcano, that enables multi-cluster batch job management, together with other types of workloads. This talk will cover: • Intelligent GPU workload scheduling across multiple clusters • Ensuring cluster failover support for seamless workload migration to clusters with available resources • Dealing with two-level scheduling consistency and efficiency - in cluster and across cluster • Balancing utilization and QoS for resource sharing among workloads with different priorities