У нас вы можете посмотреть бесплатно Random Features Hopfield Networks generalize retrieval to previously unseen examples (Negri, Spoke5) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Matteo Negri (Sapienza Università di Roma, FAIR Spoke 5 - High-quality AI) presents "Random Features Hopfield Networks generalize retrieval to previously unseen examples". This presentation is part of the Virtual Young Poster Session of the FAIR 2024 General Conference. For more information: https://fondazione-fair.it/general-co... It has been recently shown that a learning transition happens when a Hopfield Network stores examples generated as superpositions of random features, where new attractors corresponding to such features appear in the model. In this work we reveal that the network also develops attractors corresponding to previously unseen examples generated with the same set of features. We explain this surprising behaviour in terms of spurious states of the learned features: we argue that, increasing the number of stored examples beyond the learning transition, the model also learns to mix the features to represent both stored and previously unseen examples. We support this claim with the computation of the phase diagram of the model.