У нас вы можете посмотреть бесплатно 99% Miss the Golden Ratio Solution Here (xⁿ - xⁿ⁻¹ = n! - (n-1)!) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
#matholympiad #jeemaths #numbertheory #GoldenRatio #factorials #Polynomials #factorization #exponentialproblems #StirlingsApproximation #ioqm #IMO #RMO #ioqmpreparation #iitianexplains #csirmaths #rmo2026 #MATHS&SCIENCE BY IITIAN 🔥 Can You Solve This Factorial Equation? 99% Miss the Golden Ratio Solution Here (xⁿ - xⁿ⁻¹ = n! - (n-1)!) when preparing for Maths Olympiad, sit jee maths, sir maths, advanced maths examinations. Here Stirlings approximation n! ≈ √(2πn)(n/e) is used to solve the problem. In this video, we dive deep into a beautiful Number Theory problem that bridges the gap between Polynomials, Factorials, and Strilings approximations. Watch as an IITian breaks down the solution step-by-step! The Problem: Solve for x: xⁿ - xⁿ⁻¹ = n! - (n-1)! This isn't just a standard algebra problem. We explore integer solutions for small cases (n=1, 2, 3) and reveal a surprising connection to the Golden Ratio (φ). Finally, we push the boundaries to infinity using Stirling’s Approximation to find the asymptotic behaviour of x. 🧠 Concepts Covered in This Video: Algebraic Manipulation: Factoring polynomials and factorials efficiently. Case Analysis: Finding integer roots by inspection for n=1, n=2, n=3. The Golden Ratio: How φ emerges from simple factorial difference equations at n=2. Asymptotic Analysis: Using Stirling’s Formula (n! ≈ √(2πn)(n/e)ⁿ) to approximate solutions for large inputs. Complex Analysis Insights: A brief look at root behavior as n approaches infinity. 🎯 Perfect For: JEE Advanced & Mains Aspirants Math Olympiad Students (RMO, INMO, IMO, PRMO) ISI / CMI Entrance Exam Candidates KVPY & CSIR NET Aspirants Anyone who loves challenging Math problems! 💡 Key Takeaway: Learn how to approach problems that look impossible by breaking them down into small cases and applying approximation theories like x ≈ n/e for general solutions. 🔔 Don't forget to like, share, and subscribe for more such expert-led videos on JEE Mathematics, Olympiad Math, and IIT JEE Strategy Tips! The playlists and links for all videos are given below. MATHEMATICS BY IITIAN • MATHEMATICS BY IITIAN Channel Name: MATHS & SCIENCE BY IITIAN Handle: @mathsciencebyiitian Email: mathsisscience@gmail.com Kindly view, review, and comment on videos for improvement, and subscribe to my channel.