• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Strongly Consistent Global Indexes for Phoenix скачать в хорошем качестве

Strongly Consistent Global Indexes for Phoenix 6 лет назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Strongly Consistent Global Indexes for Phoenix
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Strongly Consistent Global Indexes for Phoenix в качестве 4k

У нас вы можете посмотреть бесплатно Strongly Consistent Global Indexes for Phoenix или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Strongly Consistent Global Indexes for Phoenix в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Strongly Consistent Global Indexes for Phoenix

Without transactional tables, the global indexes can get easily out of sync with their data tables in Phoenix. Transactional tables require a separate transaction manager, have some restrictions and performance penalties, are still in beta. This technical talk lays out a design to have strongly consistent global indexes without the need for an external transaction manager. In addition to having strongly consistent indexing, the proposed design aims to have minimal impact on read performance, minimal code changes, and significant operational simplification by eliminating index rebuilds. Our implementation of the design and initial performance testing has been very promising towards achieving these goals. In Phoenix, global indexing is implemented using a separate table for each secondary index of a table. Updating a table with one or more global index requires updating multiple table regions likely distributed over multiple region servers. Translating a single table update operation into a multi-table write operation poses consistency issues as Phoenix does not provide a reliable multi-table update capability without using transactional tables. Updating multiple tables (in our case, a data table and its indexes) atomically requires implementing a form of two-phase commit protocol, a transaction capability. In the general transactional update problem, there is no special relationship among the updates to be made over multiple tables within a transaction. In other words, one cannot derive the update for a table from the updates for the other tables within the same transaction. Therefore, usually the content of a transaction has to be logged on a durable media before committed to the individual tables in order to be able to recover from failures. Achieving strongly consistent global indexing does not really require implementing a general-purpose transaction capability. The reason for this is that the update for an index table can always be extracted from the update for the data table. This means if a global index is corrupted, lost or becomes inconsistent with its data table, then it can be rebuilt from the data table. This observation allows us to come up with a solution that leverages this property and is optimized for the secondary indexing problem. Another important observation is that HBase is a log-structured data store, that is, updates are never done in place. In these systems, writes are much faster when compared to in-place update systems because random writes are handled as fast as sequential writes. This allows us to add an extra write phase during updates without severely impacting the write performance, which simplifies the overall design. The proposed design is significantly different from the current design such that the proposed design has an extra write phase, changes the order of operations, and maintains per row status on index tables. It updates a data table and its index tables using a three phase write approach. In the first phase, the index table rows are updated with the “unverified” status in parallel. The verify status is a per-row-status and stored in a column of every global index table for non-transactional tables. If updating any of the index tables for a given data table fails after a number of retries, a write failure is returned to the application. This means that some of the index tables are updated with unverified rows. However, this does not pose a consistency problem since data from unverified rows are never used for serving reads (i.e., SQL queries). These rows will be rebuilt from the data table or they will be deleted if the corresponding data table rows do not exist during read operations (i.e., using a read-repair technique). In the second phase which happens if the first phase is successful, the data table is updated. If the data table update fails, then a write failure is returned to the application. Again, since the rows written to the index tables in the first phase are still unverified and data from unverified rows are never used, data table write failures (in the second write phase) do not lead to correctness issues as in the case of index table write failures in the first write phase. In the third phase which happens if the second phase is successful, the index table rows are updated with the “verified” status or deleted. A failure during the third phase is simply ignored as such failures are recovered during read operations on the index tables. After the third write phase, the completion status is returned to the application. In this talk, we will present the details of the proposed design, the proof of its correctness, and our performance tests and results.

Comments
  • Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix 6 лет назад
    Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
    Опубликовано: 6 лет назад
  • Integrating Apache Phoenix with Distributed Query Engines 6 лет назад
    Integrating Apache Phoenix with Distributed Query Engines
    Опубликовано: 6 лет назад
  • Trillion time-series events per day with HBase at Tesla 6 лет назад
    Trillion time-series events per day with HBase at Tesla
    Опубликовано: 6 лет назад
  • Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi 6 лет назад
    Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
    Опубликовано: 6 лет назад
  • Лучший Гайд по Kafka для Начинающих За 1 Час 1 год назад
    Лучший Гайд по Kafka для Начинающих За 1 Час
    Опубликовано: 1 год назад
  • We're All Addicted To Claude Code 3 дня назад
    We're All Addicted To Claude Code
    Опубликовано: 3 дня назад
  • Практический курс по SQL для начинающих - #1 Введение в PostgreSQL 4 года назад
    Практический курс по SQL для начинающих - #1 Введение в PostgreSQL
    Опубликовано: 4 года назад
  • RabbitMQ: Полный гайд для разработчика (2026) 10 дней назад
    RabbitMQ: Полный гайд для разработчика (2026)
    Опубликовано: 10 дней назад
  • Redesigning Databases for Persistent Memory Technology 6 лет назад
    Redesigning Databases for Persistent Memory Technology
    Опубликовано: 6 лет назад
  • Floating on a RAFT: HBase Durability with Apache Ratis 6 лет назад
    Floating on a RAFT: HBase Durability with Apache Ratis
    Опубликовано: 6 лет назад
  • Руководство для начинающих по хранилищу BLOB-объектов Azure 1 год назад
    Руководство для начинающих по хранилищу BLOB-объектов Azure
    Опубликовано: 1 год назад
  • Building production ready Phoenix Query Server 6 лет назад
    Building production ready Phoenix Query Server
    Опубликовано: 6 лет назад
  • Учебное пособие по ClickUp — Как использовать ClickUp для начинающих 1 год назад
    Учебное пособие по ClickUp — Как использовать ClickUp для начинающих
    Опубликовано: 1 год назад
  • How data modelling helps serve billions of queries in millisecond latency with real-time streaming 6 лет назад
    How data modelling helps serve billions of queries in millisecond latency with real-time streaming
    Опубликовано: 6 лет назад
  • Evolution of Apache HBase in Azure HDInsight 6 лет назад
    Evolution of Apache HBase in Azure HDInsight
    Опубликовано: 6 лет назад
  • Автоматизация Баз Данных с Database Connectivity Toolkit | State Machine | Global Variable Feedback 10 месяцев назад
    Автоматизация Баз Данных с Database Connectivity Toolkit | State Machine | Global Variable Feedback
    Опубликовано: 10 месяцев назад
  • Intermediate HBase Operations 6 лет назад
    Intermediate HBase Operations
    Опубликовано: 6 лет назад
  • How Editors Decide Which Music to Use! 3 часа назад
    How Editors Decide Which Music to Use!
    Опубликовано: 3 часа назад
  • Экспресс-курс RAG для начинающих 4 месяца назад
    Экспресс-курс RAG для начинающих
    Опубликовано: 4 месяца назад
  • Practical NoSQL: Accumulo's dirlist Example 6 лет назад
    Practical NoSQL: Accumulo's dirlist Example
    Опубликовано: 6 лет назад

Контактный email для правообладателей: u2beadvert@gmail.com © 2017 - 2026

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5