• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Survival Analysis of Cancer Patients Using Machine Learning Technique by Shakuntala Baichoo скачать в хорошем качестве

Survival Analysis of Cancer Patients Using Machine Learning Technique by Shakuntala Baichoo Трансляция закончилась 2 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Survival Analysis of Cancer Patients Using Machine Learning Technique by Shakuntala Baichoo
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Survival Analysis of Cancer Patients Using Machine Learning Technique by Shakuntala Baichoo в качестве 4k

У нас вы можете посмотреть бесплатно Survival Analysis of Cancer Patients Using Machine Learning Technique by Shakuntala Baichoo или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Survival Analysis of Cancer Patients Using Machine Learning Technique by Shakuntala Baichoo в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Survival Analysis of Cancer Patients Using Machine Learning Technique by Shakuntala Baichoo

PROGRAM : MACHINE LEARNING FOR HEALTH AND DISEASE ORGANIZERS : Gautam Menon (Ashoka University, Sonepat, India), Leelavati Narlikar (IISER Pune, India), Uma Ram (Seethapathy Clinic & Hospital, Chennai, India), Ponnusamy Saravanan (University of Warwick, UK) and Rahul Siddharthan (The Institute of Mathematical Sciences, Chennai, India) DATE : 24 July 2023 to 04 August 2023 VENUE: Ramanujan Lecture Hall, ICTS Bengaluru The program will bring together machine learning experts, statisticians, clinicians, and public health experts to discuss how to harness modern mathematical and computational techniques to better understand health-related data across multiple domains. Basics of various machine learning techniques, including logistic regression, tree-based methods, support vector machines, Bayesian methods, and deep networks will be covered with examples of their applicability in biomedicine and health. Applications will include predicting outcomes for individual patients from clinical and lifestyle parameters, analysing patient data such as X-rays, ultrasound images and ECG measurements, genomic variant analysis, and inferring patterns in heterogeneous large-scale data. Speakers from both computational/statistical and clinical backgrounds will be invited. While the overarching goal is to bridge the gap between mathematical modelling and clinical problems in general, the program has these specific aims: To introduce people who are trained in machine learning (both theory and practice) to data-based problems in health care. To introduce clinical practitioners with little ML background to tools that can be easily adapted to analyse their own data. To have an open discussion between clinicians and mathematical modellers about the problems faced in bridging the gap between the communities. To discuss the possibility of building public health databases as resources. To generate reference material, tutorials, videos and other resources to help clinicians understand and apply ML techniques in their work. The event is partly supported by the IMSc Centre for Disease Modelling, The Institute of Mathematical Sciences, Chennai. ICTS is committed to building an environment that is inclusive, non-discriminatory and welcoming of diverse individuals. We especially encourage the participation of women and other under-represented groups. Eligibility Criteria: PhD students in STEM fields, medical students at any level, postdoctoral fellows, faculty, professionals in any area of science, engineering, medicine. APPLICATION DEADLINE 30 April 2023 CONTACT US [email protected] PROGRAM LINK https://www.icts.res.in/program/mlhd2023

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5