У нас вы можете посмотреть бесплатно Unimaginable tricks on Expressing a Quadratic Function to Vertex Form, a[(x+b)²+c] или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
After watching this video, you would be able rewriting the Quadratic Function, f(x) = 5x²+20x-16 to Vertex Form, f(x)=a[(x+b)²+c]. That is; by method of completing the squares.
Quadratic Function
A quadratic function is a polynomial function of degree 2, represented in the form:
f(x) = ax^2 + bx + c
where:
\(a\), \(b\), and \(c\) are constants,
\(a
eq 0\).
Key Features:
1. *Graph*: The graph of a quadratic function is a parabola.
2. *Vertex*: The vertex is the highest or lowest point on the parabola, given by:
h = -\frac{b}{2a}
k = f(h)
The vertex form is \( f(x) = a(x - h)^2 + k \).
3. *Axis of Symmetry*: The vertical line \( x = h \) that passes through the vertex.
4. *Roots/Zeros*: The values of \(x\) where \(f(x) = 0\), found using the quadratic formula:
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Example:
Consider the quadratic function \( f(x) = x^2 - 4x + 4 \).
1. *Vertex*:
h = -\frac{-4}{2(1)} = 2
k = f(2) = (2)^2 - 4(2) + 4 = 0
Vertex: \((2, 0)\)
2. *Axis of Symmetry*: \( x = 2 \)
3. *Roots*:
x = \frac{4 \pm \sqrt{(-4)^2 - 4(1)(4)}}{2(1)} = 2
Root: \( x = 2 \)
Applications:
Physics: Projectile motion.
Engineering: Designing parabolic structures.
Economics: Modeling profit and cost functions.
Converting a Quadratic Function to Vertex Form
The vertex form of a quadratic function is given by:
y = a(x - h)^2 + k
where \((h, k)\) is the vertex of the parabola.
Steps to Convert Standard Form to Vertex Form:
1. *Start with the standard form*: \(y = ax^2 + bx + c\)
2. *Factor out \(a\) from the first two terms*: \(y = a(x^2 + \frac{b}{a}x) + c\)
3. *Complete the square*: Add and subtract \((\frac{b}{2a})^2\) inside the parenthesis:
y = a(x^2 + \frac{b}{a}x + (\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c
y = a((x + \frac{b}{2a})^2 - (\frac{b}{2a})^2) + c
4. *Simplify*:
y = a(x + \frac{b}{2a})^2 - a(\frac{b}{2a})^2 + c
y = a(x + \frac{b}{2a})^2 - \frac{b^2}{4a} + c
5. *Write in vertex form*:
y = a(x - h)^2 + k
where h = -\frac{b}{2a}\) and \(k = c - \frac{b^2}{4a}\).
Example:
Convert y = 2x^2 + 8x + 5 to vertex form.
1. *Factor out 2*:
y = 2(x^2 + 4x) + 5
2. *Complete the square*:
y = 2(x^2 + 4x + 4 - 4) + 5
y = 2((x + 2)^2 - 4) + 5
3. *Simplify*:
y = 2(x + 2)^2 - 8 + 5
y = 2(x + 2)^2 - 3
The vertex form is y = 2(x + 2)^2 - 3, with vertex (-2, -3)
Would you like to watch other similar videos on expressing quadratic functions to vertex form?