У нас вы можете посмотреть бесплатно PDA for L= a^n b^n UNION a^n b^2n | L= a^n b^n UNION a^n b^2n | Theory of Computation или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
#PushdownAutomata #DesignPDA, #thegatehub Design a non deterministic PDA for accepting the language L = {a^n b^{2n} : n is greater than =1} U {a^n b^{n} : n n is greater than =1}, i.e., L = {abb, aabbbb, aaabbbbbb, aaaabbbbbbbb, ......} U {ab, aabb, aaabbb, aaaabbbb, ......} In each string, the number of a’s are followed by double number of b’s or the number of a’s are followed by equal number of b’s. Here, we need to maintain the order of a’s and b’s.That is, all the a’s are are coming first and then all the b’s are coming. Thus, we need a stack along with the state diagram. The count of a’s and b’s is maintained by the stack. Approach used in the construction of PDA – In designing a NPDA, for every ‘a’ comes before ‘b’. If ‘b’ comes then For a^n b^{n} : Whenever ‘a’ comes, push it in stack and if ‘a’ comes again then also push it in the stack. For a^n b^{2n} : Whenever ‘a’ comes, push ‘a’ two time in stack and if ‘a’ comes again then do the same. When ‘b’ comes (remember b comes after ‘a’) then pop one ‘a’ from the stack each time. So that the stack becomes empty.If stack is empty then we can say that the string is accepted by the PDA. Stack transition functions – \delta(q0, a, z) = (q1, az) delta(q0, a, z) = (q3, aaz) delta(q1, a, a) = (q1, aa) delta(q1, b, a) = (q2, epsilon) delta(q2, b, a) = (q2, epsilon) delta(q2, epsilon, z) = (qf1, z) delta(q3 a, a) = (q3, aaa) delta(q3, b, a) = (q4, epsilon) delta(q4, b, a) = (q4, epsilon) delta(q4, epsilon, z) = (qf2, z) Where, q0 = Initial state qf1, qf2 = Final state epsilon = indicates pop operation Push Down Automata (PDA) for L= a^n b^n UNION a^n b^2n L= a^n b^n UNION a^n b^2n tuples of pushdown automata pda for a^n b^n UNION a^n b^2n in hindi pda for an bn UNION an b^n in hindi pda for a^n b^n UNION a^n b^2n example design pda for a^n b^n UNION a^n b^2n examples pda for a^n b^n UNION a^n b^2n in toc how to design pda for a^n b^n UNION a^n b^2n in toc construct pda for a^n b^n UNION a^n b^2n in toc design pda for a^n b^n UNION a^n b^2n in toc a^n b^n UNION a^n b^2n pda in toc pushdown automata for a^n b^n UNION a^n b^2n construct pda for a^nb^n pda for a^n b^n+2 cfg for a^nb^2n pda for a^nb^2n pda for a^n b^m+n c^n pda for a^2nb^n ques10 pda for a^nb^nc^n push pop skip operations in pushdown automata thegatehub gatehub gate lecture for toc gate cse lecture for toc pushdown pushdown automata automata pda pda example pushdown automata example pushdown automata construction construction of pushdown automata pda construction construction of pda example of pda example of pushdown automata automata lectures automata theory toc lectures toc for gate theory of computation theory of computation lectures gate computer science computer science lectures automata for gate