• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Measuring income inequality: The Lorenz curve and Gini coefficient скачать в хорошем качестве

Measuring income inequality: The Lorenz curve and Gini coefficient 4 years ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Measuring income inequality: The Lorenz curve and Gini coefficient
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Measuring income inequality: The Lorenz curve and Gini coefficient в качестве 4k

У нас вы можете посмотреть бесплатно Measuring income inequality: The Lorenz curve and Gini coefficient или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Measuring income inequality: The Lorenz curve and Gini coefficient в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Measuring income inequality: The Lorenz curve and Gini coefficient

Explanation of the Lorenz curve and Gini coefficient. Full text: In previous videos you have already seen that the prosperity in a country can be very unevenly distributed. This video explains the ways to calculate inequality: The Lorenz curve and the Gini coefficient. Let’s start with the Lorenz curve. Suppose there are 10 people living in a country, who together earn 100 euros. Let's assume that everyone earns 10 euros. Because everyone earns the same amount, there is no inequality. We put the poorest person on the left in the graph. This person, like the rest, earns 10 euros. The 2nd person also earns 10 euros. Together they earn 20 euros. So this is their accumulated income, which we call cumulative income, which is 20% of total income. The 3rd person also earns 10 euros and the income added up with the other persons is 30% of the total income. We can also do this for the other 7 people, creating a diagonal line. There is no inequality with this diagonal line; everyone earns the same amount of money. Let's adjust the example. We have 10 people who together earn 100 euros. The first person earns 1 euro. That is 1% of the total income of 100 euros. The second person earns 2 euros, which is 2% of the total income. The first and second person therefore together earn 3% of the total income. The third person earns 3 euros, which is 3% of the total income. The first 3 people together earn 6% of the total income. The 4th earns 5 euros, the 5th 7 euros and the 6th 9 euros. The first 6 people together earn 27 euros, which is 27% of the total income. The 7th person earns 11 euros, the 8th person 14 euros and the 9th person 18 euros. The first 9 people together earn 70 euros, which is 70% of the total income. The last person must therefore earn 30 euros, which is 30% of the total income. As you can see the line has become very skewed. The more there is a curve in the line, the more skewed the income distribution. The poorest people earn very little, while a few rich people earn a lot of money. We can make such a curve for each country. From this Lorenz Curve we can calculate the gini coefficient. We call the area from the diagonal to the real income distribution “A”. We call the area from the curve to the axes “B”. The formula for the gini coefficient is A divided by the total area. If the curve runs diagonally, there is complete equality. Because A is 0, the gini coefficient is also 0. The lower the gini coefficient, the more evenly the income is distributed in a country. If the curve is very skewed, then A's surface is very large. A divided by the total area is almost 1. The closer to 1, the more unevenly the income is distributed. The lowest score on the gini coefficient is 0.24; countries like this have a low degree of inequality, while the highest score worldwide is 0.63. These are countries with very unequal income distribution. So you learned that income inequality can be represented in a lorenz curve and that we can measure inequality using the gini coefficient.

Comments
  • Income Inequality: The Lorenz Curve and Gini Coefficient 1 year ago
    Income Inequality: The Lorenz Curve and Gini Coefficient
    Опубликовано: 1 year ago
    1871
  • Gini Coefficient and Lorenz Curve 6 years ago
    Gini Coefficient and Lorenz Curve
    Опубликовано: 6 years ago
    280983
  • But what is a neural network? | Deep learning chapter 1 7 years ago
    But what is a neural network? | Deep learning chapter 1
    Опубликовано: 7 years ago
    19683143
  • Understanding Engineering Drawings 2 years ago
    Understanding Engineering Drawings
    Опубликовано: 2 years ago
    1523724
  • Is inequality inevitable? 2 years ago
    Is inequality inevitable?
    Опубликовано: 2 years ago
    1408229
  • Transformers (how LLMs work) explained visually | DL5 1 year ago
    Transformers (how LLMs work) explained visually | DL5
    Опубликовано: 1 year ago
    6592963
  • Венедиктов – страх, Симоньян, компромиссы / вДудь 5 days ago
    Венедиктов – страх, Симоньян, компромиссы / вДудь
    Опубликовано: 5 days ago
    3270204
  • Understanding Buckling 3 years ago
    Understanding Buckling
    Опубликовано: 3 years ago
    952635
  • How to Invest for Beginners in 2025 5 months ago
    How to Invest for Beginners in 2025
    Опубликовано: 5 months ago
    3457608
  • Binomial distributions | Probabilities of probabilities, part 1 5 years ago
    Binomial distributions | Probabilities of probabilities, part 1
    Опубликовано: 5 years ago
    2388070

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5