• ClipSaver
  • dtub.ru
ClipSaver
РусскиС Π²ΠΈΠ΄Π΅ΠΎ
  • Π‘ΠΌΠ΅ΡˆΠ½Ρ‹Π΅ Π²ΠΈΠ΄Π΅ΠΎ
  • ΠŸΡ€ΠΈΠΊΠΎΠ»Ρ‹
  • ΠžΠ±Π·ΠΎΡ€Ρ‹
  • Новости
  • ВСсты
  • Π‘ΠΏΠΎΡ€Ρ‚
  • Π›ΡŽΠ±ΠΎΠ²ΡŒ
  • ΠœΡƒΠ·Ρ‹ΠΊΠ°
  • Π Π°Π·Π½ΠΎΠ΅
БСйчас Π² Ρ‚Ρ€Π΅Π½Π΄Π΅
  • Π€Π΅ΠΉΠ³ΠΈΠ½ Π»Π°ΠΉΡ„
  • Π’Ρ€ΠΈ ΠΊΠΎΡ‚Π°
  • Π‘Π°ΠΌΠ²Π΅Π» адамян
  • А4 ΡŽΡ‚ΡƒΠ±
  • ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ Π±ΠΈΡ‚
  • Π³ΠΈΡ‚Π°Ρ€Π° с нуля
Π˜Π½ΠΎΡΡ‚Ρ€Π°Π½Π½Ρ‹Π΅ Π²ΠΈΠ΄Π΅ΠΎ
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Keynote Presentation: SuperResNET: Learning in-cell macromolecular architecture from SMLM data ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ Π² Ρ…ΠΎΡ€ΠΎΡˆΠ΅ΠΌ качСствС

Keynote Presentation: SuperResNET: Learning in-cell macromolecular architecture from SMLM data 5 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄

ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ Π²ΠΈΠ΄Π΅ΠΎ

ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ mp3

ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ mp4

ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒΡΡ

Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ с ΠΊΠ°ΠΌΠ΅Ρ€ΠΎΠΉ

Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ с Π²ΠΈΠ΄Π΅ΠΎ

бСсплатно

Π·Π°Π³Ρ€ΡƒΠ·ΠΈΡ‚ΡŒ,

НС удаСтся Π·Π°Π³Ρ€ΡƒΠ·ΠΈΡ‚ΡŒ Youtube-ΠΏΠ»Π΅Π΅Ρ€. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΡŒΡ‚Π΅ Π±Π»ΠΎΠΊΠΈΡ€ΠΎΠ²ΠΊΡƒ Youtube Π² вашСй сСти.
ΠŸΠΎΠ²Ρ‚ΠΎΡ€ΡΠ΅ΠΌ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΡƒ...
Keynote Presentation: SuperResNET: Learning in-cell macromolecular architecture from SMLM data
  • ΠŸΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒΡΡ Π’Πš
  • ΠŸΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒΡΡ Π² ОК
  •  
  •  


Π‘ΠΊΠ°Ρ‡Π°Ρ‚ΡŒ Π²ΠΈΠ΄Π΅ΠΎ с ΡŽΡ‚ΡƒΠ± ΠΏΠΎ ссылкС ΠΈΠ»ΠΈ ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π±Π΅Π· Π±Π»ΠΎΠΊΠΈΡ€ΠΎΠ²ΠΎΠΊ Π½Π° сайтС: Keynote Presentation: SuperResNET: Learning in-cell macromolecular architecture from SMLM data Π² качСствС 4k

Π£ нас Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ бСсплатно Keynote Presentation: SuperResNET: Learning in-cell macromolecular architecture from SMLM data ΠΈΠ»ΠΈ ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ Π² максимальном доступном качСствС, Π²ΠΈΠ΄Π΅ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π±Ρ‹Π»ΠΎ Π·Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΎ Π½Π° ΡŽΡ‚ΡƒΠ±. Для Π·Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡ‹ Π½ΠΈΠΆΠ΅:

  • Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ ΠΏΠΎ Π·Π°Π³Ρ€ΡƒΠ·ΠΊΠ΅:

Π‘ΠΊΠ°Ρ‡Π°Ρ‚ΡŒ mp3 с ΡŽΡ‚ΡƒΠ±Π° ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ„Π°ΠΉΠ»ΠΎΠΌ. БСсплатный Ρ€ΠΈΠ½Π³Ρ‚ΠΎΠ½ Keynote Presentation: SuperResNET: Learning in-cell macromolecular architecture from SMLM data Π² Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π΅ MP3:


Если ΠΊΠ½ΠΎΠΏΠΊΠΈ скачивания Π½Π΅ Π·Π°Π³Ρ€ΡƒΠ·ΠΈΠ»ΠΈΡΡŒ ΠΠΠ–ΠœΠ˜Π’Π• Π—Π”Π•Π‘Π¬ ΠΈΠ»ΠΈ ΠΎΠ±Π½ΠΎΠ²ΠΈΡ‚Π΅ страницу
Если Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ со скачиваниСм Π²ΠΈΠ΄Π΅ΠΎ, поТалуйста Π½Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π² ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΡƒ ΠΏΠΎ адрСсу Π²Π½ΠΈΠ·Ρƒ страницы.
Бпасибо Π·Π° использованиС сСрвиса ClipSaver.ru



Keynote Presentation: SuperResNET: Learning in-cell macromolecular architecture from SMLM data

Presented By: Dr. Ivan Robert Nabi, PhD Speaker Biography: Dr. Nabi is Professor and Director of Imaging in the Life Sciences Institute of the University of British Columbia in Vancouver, Canada with more than 30 years of cell biology experience in the field of cellular domains and their role in cancer progression and metastasis. His work focuses on: 1. the Gp78 ubiquitin ligase, defining its role as a regulator of ER-mitochondria contacts and showing that Gp78 basal mitophagy controls cancer cell ROS; and 2. functional and structural characterization of caveolin-1 domains, including caveolae and scaffolds. Recently, in collaboration with Dr. Ghassan Hamarneh (Computing Science, Simon Fraser University) he has actively developed AI-based analysis approaches for super-resolution microscopy. Webinar: Keynote Presentation: SuperResNET: Learning in-cell macromolecular architecture from SMLM data w/ Live Q&A Webinar Abstract: Protein structures are now being resolved at the atomic level, but deciphering their molecular organization in the cell remains a challenge. Super-resolution microscopy enables the use of fluorescent-based molecular localization tools to study molecular structure at the nanoscale level in the intact cell, bridging the mesoscale gap to classical structural biology methodologies. SuperResNET is an integrated machine learning-based analysis software for visualizing and quantifying 3D point cloud data acquired by single molecule localization microscopy (SMLM). The computational modules of SuperResNET include correction for multiple blinking of a single fluorophore, denoising, segmentation (clustering), and feature extraction, which are then used for cluster group identification, modularity analysis, blob retrieval and visualization in 2D and 3D. More recent updates to SuperResNET allow two-channel interaction distance analysis to determine how two proteins interact within macromolecular assemblies. SuperResNET can be effectively and easily applied to any SMLM event list from which it rapidly learns macromolecular architecture in the intact cell. I will describe the ability of network graph analysis software (SuperResNET) to determine molecular structure from dSTORM and MinFlux single molecule localization microscopy. Use cases to be described include molecular analysis of the nucleopore complex, structural changes to clathrin coated pits by inhibitors of clathrin endocytosis and the identification and structural characterization of caveolae and non-caveolar caveolin-1 scaffolds. Learning Objectives: 1. Explain how SMLM breaks the diffraction barrier 2. Compare structure determination by SuperResNET to that obtained by cryoEM 3. Describe the structure and function of Cav1 scaffolds and caveolae Earn PACE Credits: 1. Make sure you’re a registered member of Labroots (https://www.labroots.com/virtual-even...) 2. Watch the webinar on YouTube or on the Labroots Website (https://www.labroots.com/virtual-even...) 3. Click Here to get your PACE credits (Expiration date – 9/17/2026): (https://www.labroots.com/virtual-even...) This link will be located in the CMS in the webinar CE tab – please enable third party PACE link Labroots on Social: Facebook: Β Β /Β labrootsincΒ Β  Twitter: Β Β /Β labrootsΒ Β  LinkedIn: Β Β /Β labrootsΒ Β  Instagram: Β Β /Β labrootsincΒ Β  Pinterest: Β Β /Β labrootsΒ Β  SnapChat: labroots_inc

Comments
  • Π§ΠΈΠΏΡ‹ чСловСчСских ΠΎΡ€Π³Π°Π½ΠΎΠ²: ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½ΠΎΠ²ΠΎΠ³ΠΎ поколСния для исслСдований in vitro Π² цСлях ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ Π·Π΄... 5 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
    Π§ΠΈΠΏΡ‹ чСловСчСских ΠΎΡ€Π³Π°Π½ΠΎΠ²: ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½ΠΎΠ²ΠΎΠ³ΠΎ поколСния для исслСдований in vitro Π² цСлях ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ Π·Π΄...
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 5 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
  • МодСль Β«Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ Π½Π° Ρ‡ΠΈΠΏΠ΅Β» для трансляционного модСлирования Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ/Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΈ Π·Π°Π±ΠΎ... 5 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
    МодСль Β«Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ Π½Π° Ρ‡ΠΈΠΏΠ΅Β» для трансляционного модСлирования Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ/Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΈ Π·Π°Π±ΠΎ...
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 5 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
  • Онлайн-Π²Π΅Π±ΠΈΠ½Π°Ρ€: Π Π΅Π²ΠΎΠ»ΡŽΡ†ΠΈΡ Π² области Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ: ΠΎΡ‚ открытия Π΄ΠΎ клиничСск... 6 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
    Онлайн-Π²Π΅Π±ΠΈΠ½Π°Ρ€: Π Π΅Π²ΠΎΠ»ΡŽΡ†ΠΈΡ Π² области Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ: ΠΎΡ‚ открытия Π΄ΠΎ клиничСск...
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 6 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
  • Andrej Karpathy: Software Is Changing (Again) 5 мСсяцСв Π½Π°Π·Π°Π΄
    Andrej Karpathy: Software Is Changing (Again)
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 5 мСсяцСв Π½Π°Π·Π°Π΄
  • 4 Hours Chopin for Studying, Concentration & Relaxation 4 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
    4 Hours Chopin for Studying, Concentration & Relaxation
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 4 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
  • Π’Π΅Π±ΠΈΠ½Π°Ρ€: ΠŸΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ Π² синтСзС мРНК с использованиСм внутримолСкулярного ... 6 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
    Π’Π΅Π±ΠΈΠ½Π°Ρ€: ΠŸΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ Π² синтСзС мРНК с использованиСм внутримолСкулярного ...
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 6 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
  • «ЭкономичСская ситуация мСняСтся Ρ‚Π°ΠΊ, ΠΊΠ°ΠΊ Π½Π΅ ΠΏΡ€Π΅Π΄Π²ΠΈΠ΄Π΅Π»ΠΈΒ» β€” ОлСг Π’ΡŒΡŽΠ³ΠΈΠ½ 8 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
    «ЭкономичСская ситуация мСняСтся Ρ‚Π°ΠΊ, ΠΊΠ°ΠΊ Π½Π΅ ΠΏΡ€Π΅Π΄Π²ΠΈΠ΄Π΅Π»ΠΈΒ» β€” ОлСг Π’ΡŒΡŽΠ³ΠΈΠ½
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 8 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
  • But what is quantum computing?  (Grover's Algorithm) 7 мСсяцСв Π½Π°Π·Π°Π΄
    But what is quantum computing? (Grover's Algorithm)
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 7 мСсяцСв Π½Π°Π·Π°Π΄
  • New Approach Methodologies: Microphysiological Systems for Preclinical Research 5 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
    New Approach Methodologies: Microphysiological Systems for Preclinical Research
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 5 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
  • ΠŸΡƒΡ‚ΠΈΠ½ срочно подписал Π·Π°ΠΊΠΎΠ½ / Эвакуация ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π° власти 2 часа Π½Π°Π·Π°Π΄
    ΠŸΡƒΡ‚ΠΈΠ½ срочно подписал Π·Π°ΠΊΠΎΠ½ / Эвакуация ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π° власти
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 2 часа Π½Π°Π·Π°Π΄
  • Translation: How RNA Gets Translated into Protein Power: Crash Course Biology #35 1 Π³ΠΎΠ΄ Π½Π°Π·Π°Π΄
    Translation: How RNA Gets Translated into Protein Power: Crash Course Biology #35
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 1 Π³ΠΎΠ΄ Π½Π°Π·Π°Π΄
  • Learning Software Engineering During the Era of AI | Raymond Fu | TEDxCSTU 4 мСсяца Π½Π°Π·Π°Π΄
    Learning Software Engineering During the Era of AI | Raymond Fu | TEDxCSTU
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 4 мСсяца Π½Π°Π·Π°Π΄
  • ATP & Respiration: Crash Course Biology #7 13 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
    ATP & Respiration: Crash Course Biology #7
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 13 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
  • What is CRYOEM? 2 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
    What is CRYOEM?
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 2 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
  • Как строили ΠΊΠΎΡ€Π°Π±Π»ΠΈ для ΠΌΠΈΡ€ΠΎΠ²ΠΎΠ³ΠΎ господства 8 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
    Как строили ΠΊΠΎΡ€Π°Π±Π»ΠΈ для ΠΌΠΈΡ€ΠΎΠ²ΠΎΠ³ΠΎ господства
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 8 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
  • Categorization: a core cognitive process 16 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
    Categorization: a core cognitive process
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 16 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
  • Π§Π΅Π»ΠΎΠ²Π΅ΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π» Ρ€Π΅Π²ΠΎΠ»ΡŽΡ†ΠΈΡŽ Π² ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ 3 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
    Π§Π΅Π»ΠΎΠ²Π΅ΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π» Ρ€Π΅Π²ΠΎΠ»ΡŽΡ†ΠΈΡŽ Π² ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 3 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
  • Webinar   Mass Spec Enables More Definitive Biologics Drug Discovery and Optimization 6 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
    Webinar Mass Spec Enables More Definitive Biologics Drug Discovery and Optimization
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 6 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
  • Π’Π΅Π±ΠΈΠ½Π°Ρ€ Β«ΠžΡ‚ Π°ΠΊΠΊΡ€Π΅Π΄ΠΈΡ‚Π°Ρ†ΠΈΠΈ ΠΊ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²Ρƒ: ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ CAP, CLIA ΠΈ систСм качСства Π² клиничСской ΠΏΡ€Π°ΠΊ... 5 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
    Π’Π΅Π±ΠΈΠ½Π°Ρ€ Β«ΠžΡ‚ Π°ΠΊΠΊΡ€Π΅Π΄ΠΈΡ‚Π°Ρ†ΠΈΠΈ ΠΊ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²Ρƒ: ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ CAP, CLIA ΠΈ систСм качСства Π² клиничСской ΠΏΡ€Π°ΠΊ...
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 5 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄
  • ΠšΡ€ΡƒΠΏΠ½Π΅ΠΉΡˆΠΈΠ΅ ΠΏΡ€ΠΎΡ€Ρ‹Π²Ρ‹ Π² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π°ΡƒΠΊΠ΅: 2024 Π³ΠΎΠ΄ 11 мСсяцСв Π½Π°Π·Π°Π΄
    ΠšΡ€ΡƒΠΏΠ½Π΅ΠΉΡˆΠΈΠ΅ ΠΏΡ€ΠΎΡ€Ρ‹Π²Ρ‹ Π² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π°ΡƒΠΊΠ΅: 2024 Π³ΠΎΠ΄
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 11 мСсяцСв Π½Π°Π·Π°Π΄

ΠšΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΉ email для ΠΏΡ€Π°Π²ΠΎΠΎΠ±Π»Π°Π΄Π°Ρ‚Π΅Π»Π΅ΠΉ: [email protected] © 2017 - 2025

ΠžΡ‚ΠΊΠ°Π· ΠΎΡ‚ отвСтствСнности - Disclaimer ΠŸΡ€Π°Π²ΠΎΠΎΠ±Π»Π°Π΄Π°Ρ‚Π΅Π»ΡΠΌ - DMCA Условия использования сайта - TOS



ΠšΠ°Ρ€Ρ‚Π° сайта 1 ΠšΠ°Ρ€Ρ‚Π° сайта 2 ΠšΠ°Ρ€Ρ‚Π° сайта 3 ΠšΠ°Ρ€Ρ‚Π° сайта 4 ΠšΠ°Ρ€Ρ‚Π° сайта 5