• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

The best A – A ≠ 0 paradox скачать в хорошем качестве

The best A – A ≠ 0 paradox 1 year ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
The best A – A ≠ 0 paradox
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: The best A – A ≠ 0 paradox в качестве 4k

У нас вы можете посмотреть бесплатно The best A – A ≠ 0 paradox или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон The best A – A ≠ 0 paradox в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



The best A – A ≠ 0 paradox

This video is about a new stunning visual resolution of a very pretty and important paradox that I stumbled across while I was preparing the last video on logarithms. 00:00 Intro 00:56 Paradox 03:52 Visual sum = ln(2) 07:58 Pi 11:00 Gelfond's number 14:22 Pi exactly 17:35 Riemann's rearrangement theorem 22:40 Thanks! Riemann rearrangement theorem. https://en.wikipedia.org/wiki/Riemann... This page features a different way to derive the sums of those nice m positive/n negative term arrangements of the alternating harmonic series by expressing H(n) the sum of the first n harmonic numbers by ln(n) and the Euler–Mascheroni constant. That could also be made into a very nice visual proof along the lines that I follow in this video    • 700 years of secrets of the Sum of Sums (p...  . Gelfond's number e^π being approximate equal to 20 + π may not be a complete coincidence after all: @mathfromalphatoomega There's actually a sort-of-explanation for why e^π is roughly π+20. If you take the sum of (8πk^2-2)e^(-πk^2), it ends up being exactly 1 (using some Jacobi theta function identities). The first term is by far the largest, so that gives (8π-2)e^(-π)≈1, or e^π≈8π-2. Then using the estimate π≈22/7, we get e^π≈π+(7π-2)≈π+20.  I wouldn't be surprised if it was already published somewhere, but I haven't been able to find it anywhere. I was working on some problems involving modular forms and I tried differentiating the theta function identity θ(-1/τ)=√(τ/i)*θ(τ). That gave a similar identity for the power series Σk^2 e^(πik^2τ). It turned out that setting τ=i allowed one to find the exact value of that sum. (@kasugaryuichi9767) I don't know if it's new, but it's certainly not well known. To quote the Wolfram MathWorld article "Almost Integer": "This curious near-identity was apparently noticed almost simultaneously around 1988 by N. J. A. Sloane, J. H. Conway, and S. Plouffe, but no satisfying explanation as to "why" e^π-π≈20 is true has yet been discovered." Ratio of the number of positive and negative terms It's interesting to look at the patterns of positive & negative terms when rearranging to Pi. We always only use one negative term before we switch. The first ten terms on the positive side are: 13, 35, 58, 81, 104, 127, 151, 174, 197, 220,... If you look at the differences between terms, you get: 22, 23, 23, 23, 23, 24, 23, 23, 23, 23, 23, 23, 23, 24,... The reason for this is that Gelfond's number is approximately equal to 23. It turns out that if an arrangement of our series has the sum pi, then the ratio of the numbers of positive to negative terms in the finite partial sums of the series converges to Gelfond's number. This is just one step up from what I said about us being able to get arbitrarily close to pi by turning truncations of the decimal expansion of Gelfond's number into fractions. Similarly for other target numbers. For example, to predict what the repeating pattern for e is, you just have to calculate e^e :) @penguincute3564 thus ln(0) = negative infinity (referring to +0/1-) Bug report: At the 1:18 mark, I say minus one sixth when I should have just said one sixth. Music: Silhouettes---only-piano by Muted T-shirt: Pi Day Left Vs Right Brain Pie Math Geek T-Shirt https://tinyurl.com/3e3p5yeb Enjoy! Burkard

Comments
  • Powell’s Pi Paradox:  the genius 14th century Indian solution 2 years ago
    Powell’s Pi Paradox: the genius 14th century Indian solution
    Опубликовано: 2 years ago
    533912
  • Why don't they teach simple visual logarithms (and hyperbolic trig)? 1 year ago
    Why don't they teach simple visual logarithms (and hyperbolic trig)?
    Опубликовано: 1 year ago
    412930
  • 700 years of secrets of the Sum of Sums (paradoxical harmonic series) 4 years ago
    700 years of secrets of the Sum of Sums (paradoxical harmonic series)
    Опубликовано: 4 years ago
    818514
  • Euler's and Fermat's last theorems, the Simpsons and CDC6600 7 years ago
    Euler's and Fermat's last theorems, the Simpsons and CDC6600
    Опубликовано: 7 years ago
    540171
  • Researchers thought this was a bug (Borwein integrals) 2 years ago
    Researchers thought this was a bug (Borwein integrals)
    Опубликовано: 2 years ago
    4235833
  • Is this a paradox? (the best way of resolving the painter paradox) 1 year ago
    Is this a paradox? (the best way of resolving the painter paradox)
    Опубликовано: 1 year ago
    118810
  • The Return of -1/12 - Numberphile 1 year ago
    The Return of -1/12 - Numberphile
    Опубликовано: 1 year ago
    572033
  • One minus one plus one minus one - Numberphile 11 years ago
    One minus one plus one minus one - Numberphile
    Опубликовано: 11 years ago
    4728057
  • Can you change a sum by rearranging its numbers? --- The Riemann Series Theorem 3 years ago
    Can you change a sum by rearranging its numbers? --- The Riemann Series Theorem
    Опубликовано: 3 years ago
    185266
  • The Distance Between Numbers - Numberphile 2 years ago
    The Distance Between Numbers - Numberphile
    Опубликовано: 2 years ago
    295937

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5