У нас вы можете посмотреть бесплатно General approach for re-assuring reproducibility of iterative solvers или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
ReCAP 2022 (Mar.13 - 18) https://www.recap.sci.waseda.ac.jp/re... Roman Iakymchuk (Sorbonne University / Umea University) General approach for re-assuring reproducibility of iterative solvers Abstract: Parallel implementations of Krylov subspace algorithms often help to accelerate the procedure to find the solution of a linear system. However, from the other side, such parallelization coupled with asynchronous and out-of-order execution often enlarge the non-associativity of floating-point operations. This results in non-reproducibility on the same or different settings. This paper proposes a general framework for deriving reproducible and accurate variants of a Krylov subspace algorithm. The proposed algorithmic strategies are reinforced by programmability suggestions to assure deterministic and accurate executions. The framework is illustrated on the preconditioned BiCGStab method for the solution of non-symmetric linear systems in parallel environments with message-passing. Finally, we verify the two reproducible variants of PBiCGStab on a set matrices from the SuiteSparse Matrix Collection.