У нас вы можете посмотреть бесплатно Building MCP Analytics with OpenTelemetry — Deep Dive with Shinzo Labs’ CEO или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this episode of The Context, we sit down with Austin Born — CEO of Shinzo Labs — to explore how he built MCP Analytics using OpenTelemetry. Austin shares how his background in decentralized, open-source protocol design helped shape Shinzo’s approach to observability for MCP servers and AI agents. He walks through: Why MCP developers struggle with visibility into user behavior How Shinzo’s OpenTelemetry-based instrumentation works for TypeScript & Python Dashboards for tool errors, latency, response times, and user sessions Token analytics for AI agent workflows How MCP consumers can understand context usage and improve efficiency Future plans for deeper distributed tracing and model provider telemetry Whether you're building MCP servers, shipping agent workflows, or exploring OpenTelemetry for AI systems, this conversation gives a practical look at real tooling emerging in the MCP ecosystem. 🔗 Learn more about Shinzo's AI agent analytics platform: https://shinzo.ai/ 🎥 New to MCP? Subscribe for weekly conversations with builders, maintainers, and teams scaling MCP in production.