У нас вы можете посмотреть бесплатно BI 097 Omri Barak and David Sussillo: Dynamics and Structure или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Patreon for full episodes and Discord community: / braininspired Free Video Series: Open Questions in AI and Neuroscience: https://braininspired.co/open/ Apple podcasts: https://itunes.apple.com/us/podcast/b... Spotify: https://open.spotify.com/show/2UZj8c8... Music by: The New Year: http://www.thenewyear.net/ Show notes: https://braininspired.co/podcast/97/ Omri, David and I discuss using recurrent neural network models (RNNs) to understand brains and brain function. Omri and David both use dynamical systems theory (DST) to describe how RNNs solve tasks, and to compare the dynamical stucture/landscape/skeleton of RNNs with real neural population recordings. We talk about how their thoughts have evolved since their 2103 Opening the Black Box paper, which began these lines of research and thinking. Some of the other topics we discuss: The idea of computation via dynamics, which sees computation as a process of evolving neural activity in a state space; Whether DST offers a description of mental function (that is, something beyond brain function, closer to the psychological level); The difference between classical approaches to modeling brains and the machine learning approach; The concept of universality - that the variety of artificial RNNs and natural RNNs (brains) adhere to some similar dynamical structure despite differences in the computations they perform; How learning is influenced by the dynamics in an ongoing and ever-changing manner, and how learning (a process) is distinct from optimization (a final trained state). 0:00 - Intro 5:41 - Best scientific moment 9:37 - Why do you do what you do? 13:21 - Computation via dynamics 19:12 - Evolution of thinking about RNNs and brains 26:22 - RNNs vs. minds 31:43 - Classical computational modeling vs. machine learning modeling approach 35:46 - What are models good for? 43:08 - Ecological task validity with respect to using RNNs as models 46:27 - Optimization vs. learning 49:11 - Universality 1:00:47 - Solutions dictated by tasks 1:04:51 - Multiple solutions to the same task 1:11:43 - Direct fit (Uri Hasson) 1:19:09 - Thinking about the bigger picture