• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Towards Best Practice in Explaining Neural Network Decisions with LRP (IJCNN 2020) скачать в хорошем качестве

Towards Best Practice in Explaining Neural Network Decisions with LRP (IJCNN 2020) 2 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Towards Best Practice in Explaining Neural Network Decisions with LRP (IJCNN 2020)
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Towards Best Practice in Explaining Neural Network Decisions with LRP (IJCNN 2020) в качестве 4k

У нас вы можете посмотреть бесплатно Towards Best Practice in Explaining Neural Network Decisions with LRP (IJCNN 2020) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Towards Best Practice in Explaining Neural Network Decisions with LRP (IJCNN 2020) в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Towards Best Practice in Explaining Neural Network Decisions with LRP (IJCNN 2020)

Within the last decade, neural network based predictors have demonstrated impressive - and at times superhuman - capabilities. This performance is often paid for with an intransparent prediction process and thus has sparked numerous contributions in the novel field of explainable artificial intelligence (XAI). In this paper, we focus on a popular and widely used method of XAI, the Layer-wise Relevance Propagation (LRP). Since its initial proposition LRP has evolved as a method, and a best practice for applying the method has tacitly emerged, based however on humanly observed evidence alone. In this paper we investigate - and for the first time quantify - the effect of this current best practice on feedforward neural networks in a visual object detection setting. The results verify that the layer-dependent approach to LRP applied in recent literature better represents the model's reasoning, and at the same time increases the object localization and class discriminativity of LRP. Find more information here: https://ieeexplore.ieee.org/abstract/... Subscribe for more content like this! Follow us on social media: LinkedIn:   / fraunhofer-hhi   Twitter:   / fraunhoferhhi   Instagram:   / fraunhofer_hhi  

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5