У нас вы можете посмотреть бесплатно Text By the Bay 2015: Shourabh Rawat, Organizing Real Estate Photo Collections with Deep Learning или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
ai.bythebay.io Nov 2025, Oakland, full-stack AI conference Scale By the Bay 2019 is held on November 13-15 in sunny Oakland, California, on the shores of Lake Merritt: https://scale.bythebay.io. Join us! ----- Real Estate Websites like Trulia and Zillow host millions of property listings, with each listing consisting of rich textual description and images of the property. While rich in information, the discoverability of this data is limited by its unstructured nature. For Example, How do we learn if "granite countertops" is an interesting real estate term. And if it is, how can we assign it to one of the many photos associated with the property. In this talk we detail our approach to organize Trulia's unstructured content into rich photo collections similar to Houzz.com or Zillow Digs, without the need of any explicit user tagging. By leveraging the recent advances in deep learning for computer vision and nap, we first automatically construct a knowledge base of relevant real estate terms and then annotate our photo collections by fusing knowledge from a deep convolutional network for image recognition and a word embedding model. The novelty in our approach lies in our ability to scale to a large vocabulary of real estate terms without explicitly training a vision model for each one of them. Shourabh Rawat is a senior data scientist at Trulia Inc based in San Francisco. He is an applied researcher at the intersection of machine learning, deep learning, NLP and computer vision. He received his Masters in Language Technologies from Carnegie Mellon University, Pittsburgh in 2013 where he researched on building multimodal (audio and visual) systems for detecting interesting events in Youtube videos.