У нас вы можете посмотреть бесплатно Foundation Models for Galaxy Images | Mike Walmsley или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Speaker: Dr Mike Walmsley, Dunlap Fellow at the University of Toronto Neural scaling laws suggest that larger datasets enable larger models, which then act as generalisable “foundations” for fine-tuning on downstream tasks. But what does this mean for practitioners working with images and tasks that are wildly different to those found in generic pretraining datasets (Imagenet, JFT, etc.)? This talk will cover the development of foundation models in astronomy, applying the principles from computer science and adapting them for this new context. I will show how foundation models give astronomers new tools (similarity search, anomaly search, segmentation, etc). I will focus on the combination of foundation models with citizen science, particularly the Galaxy Zoo (galaxyzoo.org) project, which recruits tens of thousands of volunteers to annotate millions of galaxy images. What should Galaxy Zoo look like in a world with ever-more-capable models? I'll highlight our steps towards live volunteer-AI collaboration for finetuning new models in weeks rather than years. This talk is part of the Liverpool Virtual Seminar Series on Data Intensive Science; more information can be found at https://indico.ph.liv.ac.uk/e/data_sc... #bigdata #datascience #dataseminar #science #data #AI