У нас вы можете посмотреть бесплатно 51 Streaming LLM Responses from Python with Ollama and httpx (Step-by-Step) PYTH 10.7 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
All the code used in this video is free and downloadable at https://industry-python.thinkific.com - Free registration required. In this tutorial, we walk through a simple, practical example of streaming responses from a local LLM in Python using Ollama and HTTPX. The goal is to clearly explain how token-by-token (chunked) streaming works without introducing unnecessary complexity. You will learn how to: Initialize a new Python project using uv Replace requests with httpx for streaming HTTP responses Configure an Ollama request with "stream": true Use a Python context manager (with) to manage an HTTP client Stream and iterate over response chunks using httpx.Client.stream Inspect and count individual response chunks as they arrive This example uses: A locally running Ollama server A small local model (e.g., LLaMA 3.2) A synchronous httpx.Client (no async/await yet, by design) By the end of the video, you’ll understand: How streaming differs from standard synchronous requests How HTTPX handles streamed responses How Ollama delivers incremental output over HTTP Why context managers are important when working with streamed connections This video is ideal if you are: New to LLM streaming Building Python tools that consume local LLMs Preparing to move toward async streaming or UI integration later No frameworks, no UI, just the core mechanics of Python-based LLM streaming.