У нас вы можете посмотреть бесплатно TBD: Towards aBridging Diffusion-models или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
SPEAKER: Alex Schwing is an Associate Professor in the Department of Electrical and Computer Engineering at the University of Illinois Urbana-Champaign and affiliated with the Coordinated Science Laboratory and the Computer Science Department. Prior to that, he was a postdoctoral fellow in the Machine Learning Group at University of Toronto collaborating with Raquel Urtasun, Rich Zemel, and Ruslan Salakhutdinov. Alex completed his PhD in computer science in the Computer Vision and Geometry Group at ETH Zurich working with Marc Pollefeys, Tamir Hazan, and Raquel Urtasun, and graduated from Technical University of Munich (TUM) with a diploma in Electrical Engineering and Information Technology. Alex's research is centered around machine learning and computer vision. He is particularly interested in algorithms for prediction with and learning of non-linear (deep nets), multivariate and structured distributions, and their application in numerous tasks (e.g., for 3D scene understanding from a single image).