У нас вы можете посмотреть бесплатно How to Build a Data Warehouse (Full Lifecycle Explained) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
𝗦𝗶𝗴𝗻 𝘂𝗽 𝗳𝗼𝗿 𝗼𝘂𝗿 𝗰𝗼𝗺𝗽𝗹𝗲𝘁𝗲 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝘁𝗿𝗮𝗶𝗻𝗶𝗻𝗴—𝐦𝐚𝐬𝐭𝐞𝐫 𝐏𝐲𝐭𝐡𝐨𝐧, 𝐒𝐐𝐋, 𝐦𝐚𝐜𝐡𝐢𝐧𝐞 𝐥𝐞𝐚𝐫𝐧𝐢𝐧𝐠, 𝐝𝐚𝐭𝐚 𝐯𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧, 𝐚𝐧𝐝 𝐜𝐨𝐫𝐞 𝐬𝐤𝐢𝐥𝐥𝐬 𝐢𝐧 𝐬𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐝𝐚𝐭𝐚 𝐡𝐚𝐧𝐝𝐥𝐢𝐧𝐠—𝐞𝐯𝐞𝐫𝐲𝐭𝐡𝐢𝐧𝐠 𝐲𝐨𝐮 𝐧𝐞𝐞𝐝 𝐭𝐨 𝐥𝐚𝐮𝐧𝐜𝐡 𝐲𝐨𝐮𝐫 𝐜𝐚𝐫𝐞𝐞𝐫: https://bit.ly/3GUyuTe Welcome to this lesson on the Data Warehouse Development Lifecycle! In this video, we’ll walk you through the entire journey of building a data warehouse — from the initial idea to full deployment and long-term maintenance. Whether you're designing your first data warehouse or optimizing an existing one, understanding each phase of the lifecycle is critical for delivering reliable, scalable, and business-ready data solutions. 🔍 What You’ll Learn: • The importance of gathering clear business requirements • How to choose the right schema (Star vs. Snowflake) • Setting up effective ETL pipelines and ensuring data accuracy • Best practices for testing and validating data • Key steps in deployment and real-world usage • Monitoring performance and system health post-launch • How to prepare for downtime, failure, and disaster recovery 💡 Did you know? Poorly defined requirements are one of the leading causes of data warehouse failure. In this video, we highlight what to look out for — and how to avoid costly mistakes. 📌 This guide is ideal for: • Data Engineers • BI Developers • Architects and Analysts • Anyone working with or building data warehouse solutions 📈 Build your warehouse the right way — and unlock powerful business insights. 𝐃𝐨𝐧’𝐭 𝐟𝐨𝐫𝐠𝐞𝐭 𝐭𝐨 𝐜𝐨𝐧𝐧𝐞𝐜𝐭 𝐰𝐢𝐭𝐡 𝐮𝐬 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐥𝐚𝐭𝐞𝐬𝐭 𝐀𝐈 𝐚𝐧𝐝 𝐝𝐚𝐭𝐚 𝐬𝐜𝐢𝐞𝐧𝐜𝐞 𝐮𝐩𝐝𝐚𝐭𝐞𝐬, 𝐩𝐫𝐚𝐜𝐭𝐢𝐜𝐚𝐥 𝐭𝐢𝐩𝐬, 𝐜𝐚𝐫𝐞𝐞𝐫 𝐚𝐝𝐯𝐢𝐜𝐞, 𝐚𝐧𝐝 𝐢𝐧𝐝𝐮𝐬𝐭𝐫𝐲 𝐢𝐧𝐬𝐢𝐠𝐡𝐭𝐬 ! / 365datascience / 365datascience / 365datascience