У нас вы можете посмотреть бесплатно Markov Decision Processes (MDP) Explained: Fundamentals, Expected Return, Policy & Value Functions или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Dive into the world of Markov Decision Processes (MDP)—a cornerstone concept in reinforcement learning and AI. In this video, we'll explain: 📌What is a Markov Decision Process? 📌Why use MDPs? Understand why MDPs are essential for modeling decision-making in uncertain environments. 📌Key Elements of MDPs: State: The current situation of the agent. Action: The choices available to the agent. Transition Probability: The likelihood of moving from one state to another given an action. Reward: The feedback received after taking an action. 📌Expected Return: How cumulative rewards are calculated over time. 📌Policy: The strategy that guides the agent’s actions. 📌Value Functions: State-Value Function: Evaluates how good it is to be in a particular state under a policy. Action-Value Function: Measures the value of taking a specific action in a state. Whether you're new to reinforcement learning or looking to deepen your understanding, this video breaks down complex MDP concepts into clear, actionable insights with real-world examples. Learn how MDPs help AI agents make optimal decisions and maximize long-term rewards. 👉 Don't forget to like, share, and subscribe for more AI and machine learning content!