У нас вы можете посмотреть бесплатно Paul Balzer - IPython and Sympy to Develop a Kalman Filter for Multisensor Data Fusion или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
View slides for this presentation here: http://www.slideshare.net/PyData/paul... PyData Berlin 2014 The best filter algorithm to fuse multiple sensor informations is the Kalman filter. To implement it for non-linear dynamic models (e.g. a car), analytic calculations for the matrices are necessary. In this talk, one can see, how the IPython Notebook and Sympy helps to develop an optimal filter to fuse sensor information from different sources (e.g. acceleration, speed and GPS position) to get an optimal estimate. more: http://balzer82.github.io/Kalman/ 00:00 Welcome! 00:10 Help us add time stamps or captions to this video! See the description for details. Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...