У нас вы можете посмотреть бесплатно Is Repeated Bayesian Interim Analysis Consequence-Free? или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
We are pleased to announce an exciting upcoming seminar as part of the ISBS Webinar Series on clinical trial innovation. The seminar, titled " Is Repeated Bayesian Interim Analysis Consequence-Free?" will be held on January 30, 2026, 11-12pm EST, featuring distinguished speakers Prof. Ying Yuan from the MD Anderson Cancer Center. Abstract: Interim analyses are vital in clinical trials for early decision-making. While frequentist implications are well-established, the consequences of repeated Bayesian interim monitoring for efficacy, specifically regarding multiplicity, remain contentious. This article provides theoretical justification and numerical evidence evaluating the impact of such designs on bias, mean squared error (MSE), credible interval coverage, false discovery rate (FDR), and average Type I error (ATIE). Our findings show that when the inferential prior matches the data-generating prior, sequential efficacy stopping does not bias the posterior mean or degrade credible interval coverage. However, even under this ``matched" condition, the FDR, ATIE, and MSE are significantly altered. In the more practically relevant scenario where the inferential and data-generating priors differ, all aforementioned operating characteristics, including estimation bias and coverage, are substantially impacted. These results reconcile long-standing conflicting arguments regarding Bayesian multiplicity. We demonstrate that while some Bayesian properties are invariant to sequential looks, others are not. Our work underscores the necessity of thoughtful prior specification and comprehensive evaluation of frequentist-Bayesian operating characteristics to ensure reliable inference in adaptive trial designs.