У нас вы можете посмотреть бесплатно Streamlit Charts Made Easy for Beginners! или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this episode of our Streamlit tutorial series, we take a deep dive into chart creation. We’ll guide you through building both Basic and Advanced charts to enhance your Streamlit applications. We begin by setting up tabs to separate Basic and Advanced Charts. In the Basic Charts section, we walk through how to create area charts, bar charts, line charts, map charts, and scatter plots using Streamlit’s built-in charting tools. Next, in the Advanced Charts section, we demonstrate how to leverage third-party libraries for more complex visualizations. We cover: Altair for detailed scatter plots, Plotly for interactive distribution charts, PyDeck for geospatial visualizations, Matplotlib for traditional plotting, and Vega for JSON-defined charting. By the end of this tutorial, you’ll have the skills to create a variety of powerful visualizations, giving your Streamlit apps a professional touch. Timestamps: 00:00 – Introduction 00:12 – Setting Up the Layout 00:28 – Basic Charts Overview 02:08 – Advanced Charts Overview 02:14 – Altair Charts for Advanced Scatter Plots 03:03 – Graph Visualizations with Node-Edge Graphs 03:17 – Plotly Charts for Distribution Plots 04:15 – Geospatial Data Visualization with PyDeck 05:17 – Matplotlib and Vega Charts 06:39 – Conclusion and Next Steps Tune in to elevate your data visualization skills with Streamlit! 🔗 Get the Code: [GitHub - jamesbmour/blog_tutorials](https://github.com/jamesbmour/blog_tu...) 🔗 Related Streamlit Tutorials: [JustCodeIt]( / @justcodeit77 ) 🍻 Support my work: [Buy Me a Coffee](https://buymeacoffee.com/bmours) #Python #StreamlitTutorial #PythonWebApps #DataVisualization #InteractiveApps #Streamlit #Webdev #Tutorial #Tutorial #FullStack