У нас вы можете посмотреть бесплатно The FASTEST Way to Build RAG Agents in Minutes! (n8n & Pinecone) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
👉 Get the template - join The AI Edge: https://www.skool.com/the-ai-edge/about 🤝 Ready to transform your business with AI? Let's talk: https://ageramanagement.co.uk/ 🔗 Links Mentioned: ⚡️ n8n: https://n8n.partnerlinks.io/3jjpno892i74 📍 Pinecone: https://www.pinecone.io/ ----- 👀 Video Overview: Learn how to build an AI customer support agent that answers questions 24/7 using YOUR business documents in 20 minutes with no coding or programming experience required. This beginner-friendly n8n tutorial shows you exactly how to create a RAG (Retrieval-Augmented Generation) system in 4 simple steps. Stop answering the same customer questions manually and automate your support using Pinecone, Google Drive, and OpenAI. Same system AI agencies sell to businesses for £1,000s+. Works globally in any language, any timezone. ⸻ 🔍 What You’ll Learn: • How to build a no-code RAG agent (complete beginner walkthrough) • What RAG systems are and why they're better than basic chatbots • Setting up free Pinecone vector database (alternative to paid solutions) • Connecting Google Drive to automatically sync your documents • Breaking documents into AI-searchable chunks • Building the AI agent in n8n (step-by-step, no programming) • Connecting cost-effective OpenAI GPT-4 Mini • Adding conversational memory so your agent remembers context • Setting up embedding dimensions correctly (1024) • Testing with real customer support questions • How to handle questions outside your knowledge base • Updating documents without creating duplicates • Deploying for 24/7 automated customer support in any timezone ⸻ 📌 Chapters: 0:00 – Intro & Demo: What We're Building 2:39 – What is RAG? (Vector Databases Explained) 5:06 – Step 1: Setting Up Google Drive Trigger 7:16 – Step 2: Processing & Chunking Documents 11:11 – Step 3: Creating Your Pinecone Vector Database 15:12 – Step 4: Building the n8n AI Agent 18:36 – Connecting Pinecone & Adding Memory 21:43 – Testing Your Agent (Live Examples) 23:57 – Wrap Up & Get the Blueprint ⸻ 🔥 Why Watch? • Build automated customer support in 24 minutes (beginner-friendly) • No Python, no coding, no programming experience needed • Free n8n workflow template included (link below) • Works with free Google Drive—no expensive storage • Stop answering the same questions manually • Same system consultants sell for £1,000s+ • Handles unlimited documents in your knowledge base • Automate responses 24/7/365 in any timezone • Complete no-code setup walkthrough • Cost-effective OpenAI GPT-4 Mini (cheaper than GPT-4) • Pinecone free tier: 100K vectors included • Perfect for small businesses, agencies, or solo founders • Prevents duplicate data when updating documents • Works in any language your documents are written in • Real example: Blue Heron Plumbing company walkthrough • Learn how to gracefully handle missing information ⸻ how to build rag agent, rag agent tutorial, n8n ai agent tutorial, no code ai agent, build ai customer support, automate customer support, vector database tutorial, pinecone tutorial, retrieval augmented generation explained, n8n automation tutorial, n8n for beginners, ai agent no code, create knowledge base ai, free chatbot tutorial, chatbot with documents, openai rag tutorial, n8n workflow tutorial, ai customer support bot, how to use pinecone, google drive ai agent, document question answering ai, ai knowledge assistant, conversational ai tutorial, build chatbot with business data, ai agent 24/7, automated support system, rag system explained, gpt-4 mini tutorial, vector embeddings tutorial, langchain alternative, pinecone vs qdrant, free ai automation, no programming ai agent, beginner ai tutorial 2025