 
                                У нас вы можете посмотреть бесплатно Residual Vector Quantization for Audio and Speech Embeddings или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
                        Если кнопки скачивания не
                            загрузились
                            НАЖМИТЕ ЗДЕСЬ или обновите страницу
                        
                        Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
                        страницы. 
                        Спасибо за использование сервиса ClipSaver.ru
                    
Try Voice Writer - speak your thoughts and let AI handle the grammar: https://voicewriter.io Residual Vector Quantization (RVQ) is a useful type of quantization that can compress a whole vector into a few integers, making it more efficient than other types of quantization. It is particularly effective for encoding speech and audio more efficiently than traditional codecs like MP3, as seen in models such as SoundStream and EnCodec. This video explains how RVQ iteratively represents vectors in terms of codebook vector entries to achieve incrementally higher fidelity representation as bitrate is increased. 0:00 - Introduction 1:10 - Encodec model architecture 2:05 - Quantization in machine learning 3:56 - Codebook quantization 5:04 - Residual vector quantization 7:54 - RVQ and bitrate in EnCodec 9:08 - EnCodec audio compression examples 10:18 - Learning codebook vectors 11:31 - Codebook updates 12:15 - Encoder commitment loss References: SoundStream paper (2021): https://arxiv.org/abs/2107.03312 EnCodec paper (2022): https://arxiv.org/abs/2210.13438 Blog post by Assembly AI: https://www.assemblyai.com/blog/what-...