У нас вы можете посмотреть бесплатно Reverse KL-Divergence training of Prior Networks или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Slides: https://bayesgroup.github.io/bmml_sem... Andrey Malinin, Yandex Research Ensemble approaches for uncertainty estimation have recently been applied to the tasks of misclassification detection, out-of-distribution input detection and adversarial attack detection. Prior Networks have been proposed as an approach to efficiently emulate an ensemble of models for classification by parameterising a Dirichlet prior distribution over output distributions. These models have been shown to outperform alternative ensemble approaches, such as Monte-Carlo Dropout, on the task of out-of-distribution input detection. However, scaling Prior Networks to complex datasets with many classes is difficult using the training criteria originally proposed. This paper makes two contributions. First, we show that the appropriate training criterion for Prior Networks is the reverse KL-divergence between Dirichlet distributions. This addresses issues in the nature of the training data target distributions, enabling prior networks to be successfully trained on classification tasks with 200 classes, as well as improving out-of-distribution detection performance. Second, taking advantage of this new training criterion, this paper investigates using Prior Networks to detect adversarial attacks. It is shown that the construction of successful adaptive whitebox attacks, which affect the prediction and evade detection, against Prior Networks trained on CIFAR-10 and CIFAR-100 takes a greater amount of computational effort than against standard neural networks, adversarially trained neural networks and dropout-defended networks.