• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

V Stebliankin. PIsToN: Evaluating protein binding interfaces with transformer networks скачать в хорошем качестве

V Stebliankin. PIsToN: Evaluating protein binding interfaces with transformer networks 1 year ago

RECOMB2023

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
V Stebliankin. PIsToN: Evaluating protein binding interfaces with transformer networks
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: V Stebliankin. PIsToN: Evaluating protein binding interfaces with transformer networks в качестве 4k

У нас вы можете посмотреть бесплатно V Stebliankin. PIsToN: Evaluating protein binding interfaces with transformer networks или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон V Stebliankin. PIsToN: Evaluating protein binding interfaces with transformer networks в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



V Stebliankin. PIsToN: Evaluating protein binding interfaces with transformer networks

"PIsToN: Evaluating protein binding interfaces with transformer networks" by Vitalii Stebliankin, Azam Shirali, Prabin Baral, Prem Chapagain and Giri Narasimhan Abstract: The computational studies of protein binding are widely used to investigate fundamental biological processes and facilitate the development of modern drugs, vaccines, and therapeutics. Scoring functions aim to predict complexes that would be formed by the binding of two biomolecules and to assess and rank the strength of the binding at the interface. Despite past efforts, the accurate prediction and scoring of protein binding interfaces remain a challenge. The physics-based methods are computationally intensive and often have to trade accuracy for computational cost. The possible limitations of current machine learning (ML) methods are ineffective data representation, network architectures, and limited training data. Here, we propose a novel approach called PIsToN (evaluating Protein binding Interfaces with Transformer Networks) that aim to distinguish native-like protein complexes from decoys. Each protein interface is transformed into a collection of 2D images (interface maps), where each image corresponds to a geometric or biochemical property in which pixel intensity represents the feature values. Such a data representation provides atomic-level resolution of relevant protein characteristics. To build hybrid machine learning models, additional empirical-based energy terms are computed and provided as inputs to the neural network. The model is trained on thousands of native and computationally-predicted protein complexes that contain challenging examples. The multi-attention transformer network is also endowed with explainability by highlighting the specific features and binding sites that were the most important for the classification decision. The developed PIsToN model significantly outperforms existing state-of-the-art scoring functions on well-known datasets.

Comments
  • S Sav. Privacy-Preserving Federated NN Learning for Disease-Associated Cell Classification 1 year ago
    S Sav. Privacy-Preserving Federated NN Learning for Disease-Associated Cell Classification
    Опубликовано: 1 year ago
    178
  • C Fırtına. BLEND: a fast, memory-efficient and accurate mechanism to find fuzzy seed matches 1 year ago
    C Fırtına. BLEND: a fast, memory-efficient and accurate mechanism to find fuzzy seed matches
    Опубликовано: 1 year ago
    100
  • Living and Aging with Hypermobility Syndromes - Dr. Irman Forghani - 2022 1 year ago
    Living and Aging with Hypermobility Syndromes - Dr. Irman Forghani - 2022
    Опубликовано: 1 year ago
    6921
  • O Sladky. Masked Superstrings as a Unified Framework for Textual k-mer Set Representations 1 year ago
    O Sladky. Masked Superstrings as a Unified Framework for Textual k-mer Set Representations
    Опубликовано: 1 year ago
    108
  • How might LLMs store facts | DL7 8 months ago
    How might LLMs store facts | DL7
    Опубликовано: 8 months ago
    1355949
  • наше будущее – магазины без продуктов (что придумали сети) 6 hours ago
    наше будущее – магазины без продуктов (что придумали сети)
    Опубликовано: 6 hours ago
    57397
  • Cybersecurity Architecture: Five Principles to Follow (and One to Avoid) 1 year ago
    Cybersecurity Architecture: Five Principles to Follow (and One to Avoid)
    Опубликовано: 1 year ago
    637724
  • The Rise of Generative AI for Business 1 year ago
    The Rise of Generative AI for Business
    Опубликовано: 1 year ago
    205312
  • Attention is all you need (Transformer) - Model explanation (including math), Inference and Training 1 year ago
    Attention is all you need (Transformer) - Model explanation (including math), Inference and Training
    Опубликовано: 1 year ago
    519067
  • Парад в честь 80-летия Великой Победы 1 day ago
    Парад в честь 80-летия Великой Победы
    Опубликовано: 1 day ago
    2901609

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS